This material is for educational purposes and does not make or imply any assurance or guarantee with respect to the life expectancy, durability or operating performance of materials, appliances, systems and equipment referred to in the information.

Review this document in conjunction with the National Building Code – 2023 Alberta Edition

	PART 4 – CODE UPDATE INFORMATION							
NBC(AE) 2019		NBC(AE) 2023						
4.1.2.1. Loads and Effects (See Note A-4.1.2.1.)		4.1.2.1. Loads and Effects (See Note A-4.1.2.1.)						
Table 4.1.2.1.Importance Categories for BuildingsForming Part of Sentence 4.1.2.1.(3)		Table 4.1.2.1.Importance Categories for Buildings ⁽¹⁾ Forming Part of Sentence 4.1.2.1.(3)						
Use and Occupancy	Importance Category	Use and OccupancyType of Building	Importance Category					
 Buildings that represent a low direct or indirect hazard to human life in the event of failure, including: low human-occupancy buildings, where it can be shown that collapse is not likely to cause injury or other serious consequences minor storage buildings 	Low ⁽¹⁾	Buildings that represent A Low Importance Category building is a building that represents a low direct or indirect hazard to human life in the event of structural failure., including: Image: Including: Image: Im	Low ⁽¹⁾					
All <i>buildings</i> except those listed in Importance Categories Low, High and Post-disaster	Normal	All <i>buildings</i> except those listed in Importance Categories Low, High and Post-disaster <u>A</u> Normal Importance Category <i>building</i> is a <i>building</i> that does not meet the criteria for a Low Importance Category <i>building</i> , High Importance Category <i>building</i> or <i>post-disaster building</i> .	Normal					
 Buildings that are likely to be used as post-disaster shelters, including buildings whose primary use is: as an elementary, middle or secondary school as a community centre Manufacturing and storage facilities containing toxic, explosive or other hazardous substances in sufficient quantities to be dangerous to the public if released⁽¹⁾ 	High	Buildings that are likely to be used as post-disaster shelters, including buildings whose primary use is: • • as an elementary, middle or secondary school • as a community centre Manufacturing and storage facilities containing toxic, explosive or other hazardous substances in sufficient quantities to be dangerous to the public if released ⁽⁴⁾ A High Importance Category building is a building that provides a greater degree of safety to human life than a Normal Importance Category building. Community centres and elementary, middle and secondary schools are High Importance Category buildings.	High					
 Post-disaster buildings are buildings that are essential to the provision of services in the event of a disaster, and include: hospitals, emergency treatment facilities and blood banks telephone exchanges power generating stations and electrical substations control centres for air, land and marine transportation public water treatment and storage facilities, and pumping stations sewage treatment facilities and buildings having critical national defence functions buildings of the following types, unless exempted from this designation by the authority having jurisdiction:⁽²⁾ emergency response facilities fire, rescue and police stations, and housing for vehicles, aircraft or boats used for such purposes communications facilities, including radio and television stations 	Post-disaster	 Post-disaster buildings are buildings that are essential to the provision of services in the event of a disaster, and include: hospitals, emergency treatment facilities and blood banks telephone exchanges power generating stations and electrical substations control centres for air, land and marine transportation public water treatment facilities and buildings having critical national defence functions sewage treatment facilities and buildings having critical national defence functions buildings of the following types, unless exempted from this designation by the authority having jurisdiction:⁽²⁾ emergency response facilities fire, rescue and police stations, and housing for vehicles, aircraft or boats used for such purposes communications facilities, including radio and television stations 	Post-disaster					
Notes to Table 4.1.2.1.: (1) See Note A-Table 4.1.2.1. (2) See Note A-1.4.1.2.(1), Post-disaster Buildings, in Division A.		Notes to Table 4.1.2.1.: (1) See Note A-Table 4.1.2.1. (2) See Note A-1.4.1.2.(1), Post-disaster Buildings, in Division A.						

(2) See Note A-1.4.1.2.(1), Post-disaster Buildings, in Division A.

Comments

Unless stated otherwise, changes shown are a result of NBC 2020 changes.

	PART 4 – CODE UPDATE INFORMATION							
NBC(AE) 2019	NBC(AE) 2023							
4.1.3.4. Serviceability	4.1.3.4. Serviceability							
	2) The effect of service loads on the serviceability limit states shall be determined in accordance with this Article and the load combinations listed in Table 4.1.3.4., the applicable combination being that which results in the most critical effect.							
	3) Other load combinations that must also be considered are the principal loads acting with the companion loads taken as zero.							
	4) Deflections calculated for load types P, T and H, if present, with load factors of 1.0 shall be included with the calculated deflections due to principal loads.							
	 5) The determination of the deflection shall consider the following: a) for materials that result in increased deformations over time under sustained loads, deflection calculation shall consider the portion of <i>live load</i>, L, that is sustained over time, L_s, and the portion that is transitory, L_t, and b) the calculated deflection due to <i>dead load</i>, D, and sustained <i>live load</i>, L_s, shall be increased by a creep factor as specified in the standards listed in Section 4.3. to obt the additional long-term deflection. 							
	 6) The determination of the long-term settlement of <i>foundations</i> shall consider the following: a) for <i>foundation soil</i> types that result in increased settlement over time under sustained loads, the additional long-term settlements shall be determined for the portion of <i>live load</i>, L, that is sustained over time, L_s, and the portion that is transitory, L_t, and b) the additional long-term settlements due to <i>dead load</i>, D, and sustained <i>live loads</i>, L_s, shall be calculated from the <i>foundation soil</i> properties provided by a qualified professional geotechnical engineer. 							
	Table 4.1.3.4.Loads and Load Combinations for ServiceabilityForming Part of Sentence 4.1.3.4.(2)							
	Limit State Structural Parameter Load Load Combinations Case Principal Loads Companion Loads							
	$ \begin{array}{ c c c c c c c } \hline Deflection for \\ \hline materials not \\ \hline subject to \\ \hline creep \\ \hline \end{array} \begin{array}{ c c c c } \hline Deflection of the \\ \hline structure or of \\ \hline components of the \\ \hline structure^{(1)} \\ \hline \end{array} \begin{array}{ c c c } \hline 1 \\ \hline 1.0D + 1.0L \\ \hline 1.0D + 1.0V \\ \hline 1.0D + 1.0S \\ \hline 0.3W \text{ or } 0.35L^{(2)} \\ \hline \end{array} $							
	$\begin{array}{ c c c c c c c c }\hline \hline Deflection for \\ \hline materials \\ \hline subject to \\ \hline creep \\ \hline \end{array} \begin{array}{ c c c c c }\hline Total deflection of the \\ \hline structure or of \\ \hline creep \\ \hline \end{array} \begin{array}{ c c c c }\hline \hline 1 \\ \hline 1 $							
	Vibration serviceabilityAcceleration							
4136 Vibration	 Notes to Table 4.1.3.4.: (1) The calculated deflection due to <i>dead load</i>, D, is permitted to be excluded where specing the standards listed in Section 4.3. (2) The companion load factor of 0.35 for <i>live load</i>, L, shall be increased to 0.5 for storage areas, equipment areas and <i>service rooms</i>. (3) The calculated immediate deflection due to <i>dead load</i>, D, is permitted to be excluded where specified in the standards listed in Section 4.3. (4) L_s = sustained portion of the <i>live load</i>, L. (5) L_t = transitory portion of the <i>live load</i>, L. (6) See Note A-Table 4.1.3.4. 							
4.1.3.6. Vibration N/A	4.1.3.6. VIDration							
	2) where floor vibrations caused by resonance with operating machinery or equipment are							

PART 4 – CODE UPDATE INFORMATION								
NBC(AE) 2019	NBC(AE) 2023							
	anticipated, dynamic analysis of the floor system shall be carried out. (See Note	<u>ə A-4.1.3.6.(2).)</u>						
4.1.4.1. Dead Loads		4.1.4.1. Dead Loads						
1) The specified <i>dead load</i> for a structural member consists of		1) The specified <i>dead load</i> for a structural member consists of						
 e) the vertical load due to earth, plants and trees.		 e) the vertical load due to <u>soil, superimposed</u> earth, plants and trees. 						
2) Except as provided in Sentence (5), in areas of a <i>building</i> where <i>partitions</i> , other than permanent <i>partitions</i> , are shown on the drawings, or where <i>partitions</i> might be added in the future, allowance shall be made for the weight of such <i>partitions</i> .		2) Except as provided in Sentence (5), in <u>In</u> areas of a <i>building</i> where <u>for which</u> partitions, other than permanent partitions, are shown on the drawings, or where the weight of partitions might referred to in Clause (1)(c) shall be added in the future, allowance shall be made for taken as the <u>actual</u> weight of such partitions. (See Note A-4.1.4.1.(2).)						
3) The <i>partition</i> weight allowance referred to in Sentence (2) shall be determin actual or anticipated weight of the <i>partitions</i> placed in any probable position, be less than 1 kPa over the area of floor being considered.	ed from the ut shall be not	3) The-In areas of a <i>building</i> for which <i>partitions</i> are not shown on the drawings, the weight of <i>partitions</i> referred to in Clause (1)(c) shall be a <i>partition</i> weight allowance referred to in Sentence (2) shall be determined from the actual or anticipated weight of the <i>partitions</i> placed in any probable and position of the <i>partitions</i> , but shall be not be less than 1 kPa over the area of floor being considered. (See Note A-4.1.4.1.(3).)						
4) <i>Partition</i> loads used in design shall be shown on the drawings as provided in 2.2.4.3.(1)(d) of Division C.	n Clause	4) Partition loads The weights of partitions and partition weight allowances user shall be shown on the drawings as provided in Clause 2.2.4.3.(1)(d) of Division	d in <u>the </u> design C.					
5) In cases where the <i>dead load</i> of the <i>partition</i> is counteractive, the load allowances referred to in Sentences (2) and (3) shall not be included in the design calculations.		5) In cases where the <i>dead load</i> of <u>Where</u> the <i>partition</i> is counteractive, the load <u>Allowance-weight allowance</u> referred to in <u>Sentences (2) and (3) Sentence (3) is</u> <u>counteractive to other loads, it</u> shall not be included in the design calculations.						
6) Except for structures where the <i>dead load</i> of <i>soil</i> is part of the load-resisting system, where the <i>dead load</i> due to <i>soil</i> , superimposed earth, plants and trees is counteractive, it shall not be included in the design calculations. (See Note A-4.1.4.1.(6).)		6) Except for structures where the <i>dead load</i> of <i>soil</i> is part of the load-resisting system, where the <i>dead load</i> due to <i>soil</i> , superimposed earth, plants and trees is counteractive <u>to other loads</u> , it shall not be included in the design calculations. (See Note A-4.1.4.1.(6).)						
4.1.5.3. Full and Partial Loading		4.1.5.3. Full and Partial Loading						
Table 4.1.5.3. Specified Uniformly Distributed Live Loads on an Area of Floor or Roof Forming Part of Sentence 4.1.5.3.(1)		Table 4.1.5.3. Specified Uniformly Distributed Live Loads on an Area of Floor or Roof Forming Part of Sentence 4.1.5.3.(1)						
Use of Area of Floor or Roof	Minimum Specified Load, kPa	Use of Area of Floor or Roof	Minimum Specified Load, kPa					
Assembly Areas	48	Assembly Areas	48					
	2.4	(a)	2.4					
0)	2.4	D) c) Portions of assembly areas with fixed seats that have backs for the	2.4					
following uses: Arenas Grandstands Stadia	2.9 ⁽¹⁾	following uses: Arenas ⁽¹⁾ Grandstands ⁽¹⁾ Stadia ⁽¹⁾	2.9 ⁽⁴⁾					
Corridors, lobbies and aisles ⁽¹⁾	4.0	Corridors, lobbies and aisles ⁽¹⁾	4.9					
Other than those listed below	4.8	Other than those listed below	4.8					
Not more than 1 200 mm in width, and all upper floor corridors of residential areas only of apartments, hotels and motels (that cannot be used by an assembly of people as a viewing area) ⁽¹⁾	(1)(3)	Not more than 1 200 mm in width, and all upper floor corridors of residential areas only of apartments, hotels and motels (that cannot be used by an assembly of people as a viewing area) ⁽¹⁾	(1) (3)					
			<u> </u>					
Garages for		Garages for						
Vehicles not exceeding 4 000 kg gross weight	2.4	Vehicles not exceeding 4 000 kg gross weight	2.4					
Vehicles exceeding 4 000 kg but not exceeding 9 000 kg gross weight Vehicles exceeding 9 000 kg gross weight	6.0 12.0 ⁽¹⁾	Vehicles exceeding 4 000 kg but not exceeding 9 000 kg gross weight Vehicles exceeding 9 000 kg gross weight ⁽¹⁾	6.0 12.0 ⁽¹⁾					

Comments

	PART 4 – CODE UPDATE INFORMATION								
NBC(AE) 2019		NBC(AE) 2023							
 Office areas (not including record storage and computer rooms) located in Basement and the first storey Floors above the first storey	 4.8 2.4	 Office areas ⁽¹⁾ (not including record storage and computer rooms) located in Basements and the first storey Floors, including mezzanines, with direct access to the exterior at ground level Floors above the first storey Other floors	4.8 4.8 2.4						
Residential areas (within the scope of Article 1.3.3.3. of Division A) Bedrooms Other areas Stairs within dwelling units Roofs Sidewalks and driveways over areaways and basements Within the scope of Article 1.3.3.3. of Division A) Bedrooms Other areas Stairs within dwelling units Roofs Sidewalks and driveways over areaways and basements <	$\begin{array}{c} \dots \\ 1.9 \\ 1.9 \\ 1.9 \\ \dots \\ 1.0^{(1)(5)} \\ 12.0^{(1)(5)} \\ \dots \end{array}$	Residential areas (within the scope of Article 1.3.3.3. of Division A) Bedrooms Other areas Stairs within dwelling units Roofs ⁽¹⁾ Sidewalks and driveways over areaways and basements ⁽¹⁾ Within the scope of Article 1.3.3.3. of Division A) Bedrooms Other areas Stairs within dwelling units Roofs ⁽¹⁾ Sidewalks and driveways over areaways and basements ⁽¹⁾ Within the scope of Article 1.3.3.3. of Division A) Bedrooms Other areas Sidewalks and driveways over areaways and basements ⁽¹⁾ Within the scope of Article 1.3.3.3. of Division A)	1.9 1.9 1.9 1.0(1)(5) 12.0(1)(5)						
 2) Except as provided in Sentences (3) and (4), roofs shall be designed for either the uniform <i>live loads</i> specified in Table 4.1.5.3., the concentrated <i>live loads</i> listed in Table 4.1.5.9., or the snow and rain loads prescribed in Subsection 4.1.6., whichever produces the most critical effects in the members concerned. 3) 4) Roof parking decks shall be designed for either the uniformly distributed <i>live loads</i> specified in Table 4.1.5.3., the concentrated <i>live loads</i> listed in Table 4.1.5.9., or the roof snow load, whichever produces the most critical effect in the members concerned. 		 2) Except as provided in Sentences (3) and (4), roofs shall be designed for either the uniform <i>live loads</i> specified in Table 4.1.5.3., the concentrated <i>live loads</i> listed in Table 4.1.5.9., or the snow and rain loads prescribed in Subsection 4.1.6., whichever produces the most critical effects in the members concerned effect. 3) 4) Roof parking decks and exterior areas accessible to vehicular traffic shall be designed for either the appropriate load combination listed in Sentence 4.1.3.2.(2) with a <i>live load</i>, L, consisting of either a uniformly distributed <i>live loads load</i> as specified in Table 4.1.5.3., the or a concentrated <i>live loads load</i> as listed in Table 4.1.5.9., or the roof snow load, 							
		 the or a concentrated <i>live loads load</i> as listed in Table 4.1.5.9., or the rewhichever produces the most critical effect in the members concerned, companion snow load, S, as prescribed in Subsection 4.1.6., but with the load factor reduced to 0.2, and b) such that the load combination in Clause (a) is not less than the snow a prescribed in Subsection 4.1.6. with the <i>live load</i> taken as zero. 5) Roof parking decks that are used for the long-term storage of vehicles shall be the appropriate load combination listed in Sentence 4.1.3.2.(2) with a <i>live load</i>, <i>l</i> either a uniformly distributed <i>live load</i> as specified in Table 4.1.5.3. or a concernal sisted in Table 4.1.5.9., whichever produces the most critical effect, and a snot prescribed in Subsection 4.1.6. 							
4.1.5.8. Variation with Tributary Area (See Note A-4.1.5.8.)		 4.1.5.8. Variation with Tributary Area (See Note A-4.1.5.8.) 1) One- and two-way floor slabs shall have no reduction for tributary area applied 	ed to <i>live load.</i>						
4) Where the specified <i>live load</i> for a floor is reduced in accordance with Sente the structural drawings shall indicate that a <i>live load</i> reduction factor for tributar applied.	ence (2) or (3), ry area has been	45) Where the specified <i>live load</i> for a floor is reduced in accordance with Senter (34), the structural drawings shall indicate that a <i>live load</i> reduction factor for tribeen applied and which structural elements are impacted by this factor.	ənce (<mark>2</mark> 3) or butary area has						
4.1.5.14. Loads on Guards and Handrails (See Note A-4.1.5.14. and 4.1.5.15.(1).)		4.1.5.14. Loads on Guards and Handrails (See Note A-4.1.5.14. and 4.1.5.15.(1).)							
1) The minimum specified horizontal load applied outward at the minimum requ	uired heiaht of	1) The minimum specified horizontal load specified live load applied outward at	the minimum						

PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019	NBC(AE) 2023				
 every required guard shall be a) 3.0 kN/m for open viewing stands without fixed seats and for means of egress in grandstands, stadia, bleachers and arenas, b) a concentrated load of 1.0 kN applied at any point, so as to produce the most critical effect, for access ways to equipment platforms, contiguous stairs and similar areas where the gathering of many people is improbable, and c) 0.75 kN/m or a concentrated load of 1.0 kN applied at any point so as to produce the most critical effect, whichever governs for locations other than those described in Clauses (a) and (b). 	 required height of every required guard shall be a) 3.0 kN/m for open viewing stands without fixed seats and for means of egress in grandstands, stadia, bleachers and arenas, b) a concentrated load of 1.0 kN applied at any point, so as to produce the most critical effect, for access ways to equipment platforms, contiguous stairs and similar areas where the gathering of many people is improbable, and c) 0.75 kN/m or a concentrated load of 1.0 kN applied at any point so as to produce the most critical effect, whichever governs, for locations other than those described in Clauses (a) and (b). 				
2) The minimum specified horizontal load applied inward at the minimum required height of every required <i>guard</i> shall be half that specified in Sentence (1).	2) The minimum specified horizontal load specified <i>live load</i> applied inward at the minimum required height of every required <i>guard</i> shall be half that specified in Sentence (1).				
3) Individual elements within the <i>guard</i> , including solid panels and pickets, shall be designed for a load of 0.5 kN applied outward over an area of 100 mm by 100 mm located at any point in the element or elements so as to produce the most critical effect.	3) Individual elements within the <i>guard</i> , including solid panels and pickets, shall be designed for a <u>load horizontal specified <i>live load</i> of 0.5 kN applied outward over an area of 100 mm by 100 mm located at any point in <u>on</u> the element or elements so as to produce the most critical effect.</u>				
4) The size of the opening between any two adjacent vertical elements within a <i>guard</i> shall not exceed the limits required by Part 3 when each of these elements is subjected to a specified <i>live load</i> of 0.1 kN applied in opposite directions in the in-plane direction of the <i>guard</i> so as to produce the most critical effect.	4) The size of the opening between any two adjacent vertical elements within a <i>guard</i> shall not exceed the limits required by Part 3 when each of these elements is subjected to a <u>horizontal</u> specified <i>live load</i> of 0.1 kN applied in opposite directions in the in-plane direction of the <i>guard</i> so as to produce the most critical effect.				
5) The loads required in Sentence (3) need not be considered to act simultaneously with the loads provided for in Sentences (1), (2) and (6).	5) The loads specified <i>live loads</i> required in Sentence (3) need not be considered to act simultaneously with the loads provided for in Sentences (1), (2), (6) and ($\frac{67}{2}$).				
6) The minimum specified load applied vertically at the top of every required <i>guard</i> shall be 1.5 kN/m and need not be considered to act simultaneously with the horizontal load provided for in Sentence (1).	6) The minimum specified <u>load</u> <u>live load</u> applied vertically at the top of every required guard shall be 1.5 kN/m and need not be considered to act simultaneously with the horizontal <u>load</u> <u>specified live load</u> provided for in <u>Sentence Sentences (1), (3) and (7)</u> .				
 7) Handrails and their supports shall be designed and constructed to withstand the following loads, which need not be considered to act simultaneously: a) a concentrated load not less than 0.9 kN applied at any point and in any direction for all handrails, and b) a uniform load not less than 0.7 kN/m applied in any direction to handrails not located within <i>dwelling units</i>. 	 7) Handrails and their supports shall be designed and constructed to withstand the following load minimum specified <i>live loads</i>, which need not be considered to act simultaneously: a) a concentrated load not less than 0.9 kN applied at any point and in any direction for all handrails, and b) a uniform load not less than 0.7 kN/m applied in any direction to for handrails not located within <i>dwelling units</i>. 				
4.1.6.2. Specified Snow Load (See Note A-4.1.6.2.)	4.1.6.2. Specified Snow Load (See Note A-4.1.6.2.)				
1) The specified load, S, due to snow and associated rain accumulation on a roof or any other <i>building</i> surface subject to snow accumulation shall be calculated using the formula	1) The specified load, S, due to snow and associated rain accumulation on a roof or any other <i>building</i> surface subject to snow accumulation shall be calculated using the formula				
$S = I_s [S_s (C_b C_w C_s C_a) + S_r]$	$S = I_{s} [S_{s} (C_{b}C_{w}C_{s}C_{a}) + S_{r}]$				
where $I_s = importance factor for snow load as provided in Table 4.1.6.2A,$ $S_s =$ $C_b =$ $C_w = wind exposure factor in Sentences (3) and (4), Cs = slope factor in Sentences (5),$ (6) and (7), $C_a =$ $S_r =$	where $I_s = \text{importance factor for snow load}_a \text{ as provided in Table 4.1.6.2A},$ $S_s = \dots$ $C_b = \dots$ $C_w = \text{wind exposure factor in Sentences (3) and (4)}, Cs = \text{slope factor in Sentences (5)}_{\overline{y}}$ $(6) \text{ and } \underline{\text{to}}(7),$ $C_a = \dots$ $S_r = \dots$				
 2) The basic roof snow load factor, C_b, shall a) be determined as follows: i) ii) 	 2) The basic roof snow load factor, C_b, shall a) be determined as follows: i) ii) 				

PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019	NBC(AE) 2023				
$C_{\rm b} = \frac{1}{C_{\rm w}} \left[1 - (1 - 0.8C_{\rm w}) \exp\left(-\frac{l_{\rm c}C_{\rm w}^2 - 70}{100}\right) \right] \text{ for } l_{\rm c} > \left(\frac{70}{C_{\rm w}^2}\right)$	$C_{\rm b} = \frac{1}{C_{\rm w}} \left[1 - (1 - 0.8C_{\rm w}) \exp\left(-\frac{l_{\rm c}C_{\rm w}^2 - 70}{100}\right) \right] \text{ for } l_{\rm c} > \left(\frac{70}{C_{\rm w}^2}\right)$				
where l_c = characteristic length of the upper or lower roof, defined as 2w-w ² /l, in m, w = l = larger plan dimension of the roof, in m, or b) conform to Table 4.1.6.2B, using linear interpolation for intermediate values of $l_c C_w^2$. (See Note A-4.1.6.2.(2).)	 where lc = characteristic length of the upper or lower roof, defined as 2ww²/l, in m, w = l = larger plan dimension of the roof, in m, or b) conform to Table 4.1.6.2B, using linear interpolation for intermediate values of lc C²_{w⁻¹} or c) be taken as equal to 1 for any roof structure with a mean height of less than 1 + Ss/γ, in m, above grade, where γ is the specific weight of snow determined in accordance with Article 4.1.6.13. (See Note A-4.1.6.2.(2).) 				
4.1.6.4. Specified Rain Load	4.1.6.4. Specified Rain Load				
4) Where scuppers are provided and where the position, shape and deflection of the loaded surface make an accumulation of rainwater possible, the loads due to rain shall be the lesser of either the one-day rainfall determined in conformance with Subsection 1.1.3. or a depth of rainwater equal to 30 mm above the level of the scuppers, applied over the horizontal projection of the surface and tributary areas.	4) Where scuppers are provided <u>as secondary drainage systems</u> and where the position, shape and deflection of the loaded surface make an accumulation of rainwater possible, the loads due to rain shall be the lesser of either the one-day rainfall determined in conformance with Subsection 1.1.3. or a depth of rainwater equal to 30 mm above the <u>level bottom</u> of the scuppers, applied over the horizontal projection of the surface and tributary areas.				
4.1.6.5. Multi-level Roofs	4.1.6.5. Multi-level Roofs				
1) The drifting load of snow on a roof adjacent to a higher roof shall be taken as trapezoidal, as shown in Figure 4.1.6.5A, and the accumulation factor, Ca, shall be determined as follows:	1) The drifting load of snow on a roof adjacent to a higher roof shall be taken as trapezoidal, as shown in Figure 4.1.6.5A, and the accumulation factor, Ca, shall be determined as follows:				
$C_a = C_{a0} - (C_{a0} - 1)\left(\frac{x}{x_d}\right) \text{ for } 0 \le x \le x_d$ or	$C_{a} = C_{a0} - (C_{a0} - 1)\left(\frac{x}{x_{d}}\right) \text{ for } 0 \le x \le x_{d}$ or				
$C_a = 1.0$ for $x \le x_d$	$C_a = 1.0$ for $x \le x_d$				
where C_{a0} = peak value of C_a at x = 0 determined in accordance with Sentences (3) and (4) and as shown in Figure 4.1.6.5B, x = x_d =	where C_{a0} = peak value of C_a at x = 0 determined in accordance with Sentences (3) and to (45) and as shown in Figure 4.1.6.5B, x = x_d =				
2)	2)				
Figure 4.1.6.5A Snow load factors for lower level roofs Forming Part of Sentences 4.1.6.5.(1) and (3) and 4.1.6.6.(1)	Figure 4.1.6.5A Snow load factors for lower level roofs Forming Part of Sentences 4.1.6.5.(1) and (3) <u>, Table 4.1.6.5A</u> and <u>Sentence 4.1.6.6.(1)</u>				

Notes to Figure 4.1.6.5.-A:

- (1) If a > 5 m or h ≤ $0.8S_s/\gamma$, drifting from the higher roof need not be considered.
- (2) For lower roofs with parapets, $C_s = 1.0$, otherwise it varies as a function of slope α as defined in Sentences 4.1.6.2.(5) and (6).

Notes to Figure 4.1.6.5.-A:

- (1) If a > 5 m or h $\leq 0.8 S_s / \gamma$, drifting from the higher roof need not be considered.
- (2) For lower roofs with parapets, C_S = 1.0, otherwise it varies as a function of slope α as defined in Sentences 4.1.6.2.(5) and (6).If h ≥ 5 m, the value of C_{a0} for Case I is permitted to be determined in accordance with Sentence 4.1.6.5.(4).

Table 4.1.6.5.-A

Wind Exposure, Slope and Accumulation Factors in Figure 4.1.6.5.-A

Distance from	Factors						
Roof Step, x	<u>C</u> w	<u>Cs⁽¹⁾</u>	<u>Ca</u>				
<u>0</u>	<u>1.0</u>	<u>f(α)</u>	<u>Ca0</u>				
$0 < x \leq x_d$	<u>1.0</u>	<u>f(α)</u>	<u>Ca0 - (Ca0 -</u>				
			<u>1)(x/x_d)</u>				
<u>xd < x ≤ 10h′</u>	<u>1.0</u>	<u>f(α)</u>	<u>1.0</u>				
<u>x > 10h'</u>	1.0 for unexposed roof areas 0.75 for exposed roof areas 0.5 for exposed roof areas north of tree line	<u>f(α)</u>	<u>1.0</u>				

Notes to Table 4.1.6.5.-A:

(1) For lower roofs with parapets, $C_s = 1.0$; otherwise, C_s varies as a function of slope, α , as

	PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019	NBC(AE) 2023					
	defined in Sentences 4.1.6.2.(5) and (6).					
3) The value of C_{a0} for each of Cases I, II, and III shall be the lesser of	3) The Except as provided in Sentence (4), the value of C_{a0} for each of Cases I, II ₇ and III shall be the lesser of					
	4) Where $h \ge 5$ m, the value of Ca0 for Case I is permitted to be taken as					
	$\frac{C_{a0} = \binom{25-h}{20} \left(\frac{F}{C_b} - 1\right) + 1 \text{ for } 5 \text{ m} \le h \le 25 \text{ m}, \text{ and}}{C_{a0} = 1 \text{ for } h > 25 \text{ m}}$					
4) The value of C_{a0} shall be the highest of Cases I, II and III, considering the different r source areas for drifting snow, as specified in Sentence (3) and Figure 4.1.6.5B.	45) The value of C _{a0} shall be the highest of Cases I, II and III, considering the different roof source areas for drifting snow, as specified in <u>Sentence-Sentences (</u> 3) and <u>(4) and Figure 4.1.6.5B.</u>					
Figure 4.1.6.5B Snow load cases I, II and III for lower level roofs Forming Part of Sentences 4.1.6.5.(1), (3) and (4)	Figure 4.1.6.5B Snow load cases I, II and III for lower level roofs Forming Part of Sentences 4.1.6.5.(1), (3) and (4 <u>5), and Table 4.1.6.5B</u>					
ROOF PLAN	ROOF PLAN					
Case I Case II Case III	Case I Case II Case III					
Upper Roof source area for snow in drift Lower Roof Lower Roof Source area for snow in drift Lower Roof Source area for snow in distance Roof Source area for snow in distance Roof Source area for snow in distance Roof Source area for snow in distance Roof	Upper Roof source area for snow in drift Lower Roof Lower Roof					
Parameter Case I Case II Case III	Parameter Case I Case II Case III					
β 1.0 0.67 0.67	parapet height of parapet height of					
h _p paraper neight of paraper	h _p upper soof source lower-roof source area lower-roof source area					
$I_{cs} = 2w_s - \frac{w_s^2}{l_s}$ with w_s and l_s being the shorter and longer dimensions of the upper roof with w_s and l_s being the shorter and longer dimensions of the upper roof with w_s and l_s being the shorter and longer dimensions of source area on lower roof for upwind facing step with w_s and l_s being the shorter and longer dimensions of the source area on the lower roof for downwind facing step with w_s and l_s being the shorter and longer dimensions of the source area on the lower roof for downwind facing step	$I_{cs} = 2w_s - \frac{w_s^2}{l_s}$ with w_s and I_s with w_s and I_s being the shorter and longer dimensions of the upper roof dimensions of the source area on lower roof for upwind facing step dimensions of the lower roof for					
EG01302B	Table 4.1.6.5B					

Parameters for Snow Load Cases in Figure 4.1.6.5.-B

	PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019	NBC(AE) 2023					
	face with lower C _{a0} Upper roof Lower roof					
	 4.1.6.16. Roofs with Solar Panels (See Note A-4.1.6.16.) 1) Where solar panels are installed on a roof, the snow loads, S, shall be determined in accordance with Sentences (2) to (6) or with the requirements for roofs without solar panels, whichever produces the most critical effect. 2) For the purposes of this Article, solar panels shall be classified as a) Parallel Flush, where the panels are installed parallel to the roof surface with their upper surface less than or equal to C_bCw₃V₄ above the roof surface, with their upper surface greater than C_bCw₃V₄ above the roof surface, or c) Tilted, where the panels are installed parallel to the roof surface with their higher surface greater than C_bCw₃V₄ above the roof surface, or c) Tilted, where the panels, the snow loads, S, shall be determined in accordance with the requirements for roofs without solar panels, except that the slope factor, C_s, shall be a) taken as 1.0 for roof areas extending upslope from the downslope edge of a panel or array of panels at an angle of 45° from each side edge of the panel or array, and b) as specified in Sentences 4.1.6.2.(5) to (7) for all other roof slope is greater than or equal to the requirements for roofs without solar panels, the snow loads, S, shall be determined in accordance with the requirements for roofs without solar panels, except that a) C_s shall be determined in accordance with Sentence (3). b) where the gap width, w₀, between the panels along the roof slope is greater than or equal to the panel width, w₀, along the roof slope, the accumulation factor, C_a, shall be taken as i) 0.0 for the panels, ii) 2.0 for roof areas within a distance of w₀ downslope from a downslope panel edge and iii) 1.0 for all other roof areas 					

	PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019	NBC(AE) 2023					
	panel width, w _p , along the roof slope, C _a shall be taken as					
	i) 0.0 for panel areas within a distance of wg downslope from an upslope panel edge,					
	ii) 1.0 for other panel areas,					
	iii) 2.0 for roof areas in gaps between the panels, and					
	iv) 1.0 for all other roof areas					
	(see Note A-4.1.6.16.(4)(c)).					
	5) For roots with Parallel Raised solar panels, the snow loads, S, shall be determined in					
	accordance with the requirements for roofs without solar panels, except that					
	a) where the root is flat, Ca shall be taken as					
	<u>i) 1.0 for the panels,</u>					
	ii) 1.0 for roof areas not under the panels,					
	<u>III) 1.0 for root areas under the panels within a distance of min(2ng,2wg) from a panel</u>					
	edge, where ng is the gap height between the lower surface of the panels and the					
	roof surface, and w_q is the gap width between the panels, and					
	<u>IV) 0.0 for other root areas under the panels</u>					
	(see Note A-4.1.6.16.(5)(a)), and b) where the rest is cloned, the energy leads C, derived from Cloves (c) shall be used					
	b) where the tool is sloped, the show loads, 5, derived from Clause (a) shall be used,					
	i) C shall be determined in accordance with Sentence (2)					
	$\frac{1}{10}$ C _s shall be determined in accordance with Sentence (3),					
	ii) S for all reaf grade aball be taken as the sum of S on the panels, as derived from					
	(a) (b) and abifted by a distance of w downslope anto the reaf, where w					
	Subclause (a)(i) and shifted by a distance of w_p downslope onto the root, where w_p is the papel width along the root slope, and S on the root areas, as derived from					
	Subclauses (a)(ii) to (a)(iv)					
	$\frac{\text{Subclauses (a)(ii) to (a)(iv)}}{(\text{see Note A-4, 1, 6, 16, (5)(b))}}$					
	(<u>see Note A-4.1.0.10.(5)(5)).</u>					
	6) For flat roofs with Tilted solar papels, the spow loads, S, shall be determined in accordance					
	with the requirements for roofs without solar panels, except that					
	a) C_a shall be taken as 0.0 for the panels.					
	b) C_a shall be taken as 1.0 for roof areas beyond a distance of 5(h – C _b C _w S _s /v) from the					
	lowest edge of the panels, where h is the height of the highest edge of the panels					
	above the roof surface,					
	c) except as provided in Clauses (d) and (e), for roof areas within a distance of 5(h -					
	$C_bC_wS_s/\gamma$) from the lowest edge of the panels, C_a shall be taken as					
	i) 1.25 for $(h_g - C_b C_w S_s / \gamma) \le 0.3$ m, where h_g is the gap height					
	between the lowest edge of the panels and the roof surface,					
	ii) $1.294 - 0.1471(h_g - C_b C_w S_s / \gamma)$ for $0.3 < (h_g - C_b C_w S_s / \gamma) \le 2.0$ m, and					
	iii) 1.0 for $(h_g - C_b C_w S_s / \gamma) > 2.0 \text{ m}$					
	<u>(see Note A-4.1.6.16.(6)(c)),</u>					
	d) except as provided in Clause (e), Ca shall be taken as 2.0 for roof areas within a					
	distance of wph beyond the lowest edge of the panels, where wph is the horizontal					
	projection of the panel width, w _p , along the sloped panel edges, and					
	e) where the panels, panel supports or back plates obstruct show from sliding under the					
	panels, the load of the increased volume of show in the gaps between the panels shall					
	$\frac{\text{be considered to be uniformly distributed.}}{(\text{See Note A, 4, 1, 6, 16, (6)})}$					
	1000 MOIE A-4.1.0.10.(0).)					
4.1.7.2. Classification of Buildings	4.1.7.2. Classification of Buildings					
(See Note A-4.1.7.2.)	(See Note A-4.1.7.2.)					
2) A <i>building</i> shall be classified as dynamically sensitive if	2) A building shall be classified as dynamically sensitive if					
a) its lowest natural frequency is less than 1 Hz and greater than 0.25 Hz,	a) its lowest natural frequency is less than 1 Hz and greater than 0.25 Hz,					
b) its height is greater than 60 m, or	b) its height is greater than 60 m, or					
c) its height is greater than 4 times its minimum effective width, where the effective width,	c) its height is greater than 4 times its minimum effective width, where the effective width,					
w, of a <i>building</i> shall be taken as	w, of a <i>building</i> shall be taken as					
$\sum \mathbf{h}$.w.	∇ h.w.					
$W = \frac{\Delta u_i w_i}{\Sigma L}$	$W = \frac{\Delta u_i w_i}{\Sigma h}$					
$\sum n_i$	\perp $\sum n_i$					

	PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019	NBC(AE) 2023					
where the summations are over the height of the <i>building</i> for a given wind direction, h_i is the height above grade to level i, and w_i is the width normal to the wind direction at height h_i ; the minimum effective width is the lowest value of the effective width considering all wind directions.	where the summations are over the height of the <i>building</i> for a given wind direction, h_i is the height above grade-grade to level i, and w_i is the width normal to the wind direction at height h_i ; the minimum effective width is the lowest value of the effective width considering all wind directions.					
 3) A <i>building</i> shall be classified as very dynamically sensitive if a) its lowest natural frequency is less than or equal to 0.25 Hz, or b) its height is more than 6 times its minimum effective width as defined in Clause (2)(c). 	 3) A <i>building</i> shall be classified as very dynamically sensitive if a) its lowest natural frequency is less than or equal to 0.25 Hz, or b) <u>it contains a human occupancy, and</u> its height is more than 6 times its minimum effective width as defined in Clause (2)(c). 					
4.1.7.5. External Pressure Coefficients	4.1.7.5. External Pressure Coefficients					
 1) Applicable values of external pressure coefficients, C_p, are provided in a) Sentences (2) to (5), and b) Article 4.1.7.6. for certain shapes of low <i>buildings</i>. 	 1) Applicable values of external pressure coefficients, C_p, are provided in a) Sentences (2) to (59), and b) Article 4.1.7.6. for certain shapes of low <i>buildings</i>. 					
5) For the design of balcony <i>guards</i> , the internal pressure coefficient, C_{pi} , shall be taken as zero and the value of C_p shall be taken as ±0.9, except that within a distance equal to the larger of 0.1W and 0.1D from a <i>building</i> corner, C_p shall be taken as ±1.2.	5) For Except as provided in Sentence (6), for the design of balcony guards, the internal pressure coefficient, C_{pi} , shall be taken as zero and the value of C_p shall be taken as ±0.9, except that, within a distance equal to the larger of 0.1W and 0.1D from a <i>building</i> corner, C_p shall be taken as ±1.2.					
	<u>6)</u> Where the top of the balcony <i>guard</i> is 2.0 m or less below the roof surface, the values of C_P shall be taken as equal to those determined for parapets in Sentences (7) and (8).					
	 7) To determine the contribution from parapets to the wind loads on the main structural system, the values of C_p shall be taken as a) on the outer faces, equal to those on the walls below, b) on the inner face of the windward parapet, equal to that on the upwind edge of a roof surface at the level of the top of the parapet, and c) on the inner faces of the other parapets, zero. 					
	8) For the structural design of parapets themselves, the values of C_p shall be taken as equal to those specified in Sentence (7), except that the value of C_p on the inner face of the leeward parapet shall be taken as equal to that on the outer face of the windward parapet.					
	 9) For the design of cladding on parapets, the values of C_p shall be taken as a) on the outer vertical surfaces, equal to those on the cladding on the walls below, and b) on the inner and top surfaces, equal to those on the cladding of a roof surface at the level of the top of the parapet. 					
4.1.7.6. External Pressure Coefficients for Low Buildings	4.1.7.6. External Pressure Coefficients for Low Buildings					
2) For the design of the main structural system of the <i>building</i> , which is affected by wind pressures on more than one surface, the values of C_pC_g are provided in Figure 4.1.7.6A.	2) For the design of the main structural system of the <i>building</i> , which is affected by wind pressures on more than one surface as shown in Figure 4.1.7.6A, the values of $G_pC_gC_p$ are provided in Figure-Table 4.1.7.6A.					
Figure 4.1.7.6A External peak values of CpCg for primary structural actions arising from wind load acting simultaneously on all surfaces of low buildings (H ≤ 20 m) Forming Part of Sentence 4.1.7.6.(2)	Figure 4.1.7.6A External peak values of CpCg for primary <u>Primary</u> structural actions arising from wind load acting simultaneously on all surfaces of low buildings (H ≤ 20 m) Forming Part of Sentence 4.1.7.6.(2) and Table 4.1.7.6.					

Notes to Figure 4.1.7.6.-A:

(1) ...

- (2) For values of roof slope not shown, the coefficient (C_pC_g) can be interpolated linearly.
- (3) Positive coefficients denote forces toward the surface, whereas negative coefficients denote forces away from the surface.
- (4) For the design of *foundations*, exclusive of anchorages to the frame, only 70% of the effective load is to be considered.
- (5) The reference height, h, for pressures is the mid-height of the roof or 6 m, whichever is greater. The eave height, H, may be substituted for the mid-height of the roof if the roof slope is less than 7°.
- (6) End-zone width y should be the greater of 6 m or 2z, where z is the width of the gable-wall end zone defined for Load Case B below. Alternatively, for *buildings* with frames, the end zone y may be the distance between the end and the first interior frame.
- (7) End-zone width z is the lesser of 10% of the least horizontal dimension and 40% of height,

Notes to Figure 4.1.7.6.-A:

(1) ...

- (2) For values of roof slope not shown, the coefficient (C_pC_g) can be interpolated linearly.
- (3) Positive coefficients denote forces toward the surface, whereas negative coefficients denote forces away from the surface.
- (42)For the design of *foundations*, exclusive of anchorages to the frame, only 70% of the effective load is to be considered.
- (53) The reference height, h, for pressures is the mid-height of the roof or 6 m, whichever is greater. The eave height, H, may be substituted for the mid-height of the roof if the roof slope is less than 7°.
- (64) End-zone width y should be the greater of 6 m or 2z, where z is the width of the gable-wall end zone defined for Load Case B below. Alternatively, for *buildings* with frames, the endzone width y may be the distance between the end and the first interior frame.
- (75)End-zone width z is the lesser of 10% of the least horizontal dimension and 40% of height,

	PART 4 – CODE UPDATE INFORMATION														
NBC(AE) 2019						NB	C(AE)	2023							
 H, but not less than 4% of the least horizontal dimension or 1 m. (8) For B/H > 5 in Load Case A, the listed negative coefficients on surfaces 2 and 2E should only be applied on an area whose width is 2.5H measured from the windward eave. The pressures on the remainder of the windward roof should be reduced to the pressures for the leeward roof. 	 H, but not less than 4% of the least horizontal dimension or 1 m. (86)For B/H > 5 in Load Case A, (6) the listed negative coefficients on listed for surfaces 2 and 2E in Table 4.1.7.6. should only be applied on an area whose width is 2.5H measured from the windward eave. The pressures on the remainder of the windward roof should be reduced to the pressures for the leeward roof. 											and from			
	<u>Table 4.1.7.6.</u> <u>External Peak Values of C_gC_p in Figure 4.1.7.6A</u> <u>Forming Part of Sentence 4.1.7.6.(2)</u>														
	Load	Poof				Ex	ternal F	Peak Values of C _g C _p ⁽¹⁾⁽²⁾							
	Case	Slope	1	1E	2	2E	3	3E	4	4E	5	5E	6	<u>6</u>	
		<u>0° to 5°</u>	<u>0.75</u>	1.1	<u>5</u> -1.3	-2.0	<u>-0.7</u>	-1.0	<u>-0.55</u>	-0.8	-				
	A	<u>20°</u> 30° to 45°	<u>1.0</u> <u>1.05</u>	<u>1.5</u>	<u>5</u> <u>-1.3</u> <u>3</u> <u>0.4</u>	<u>-2.0</u> 0.5	<u>-0.9</u> -0.8	<u>-1.3</u> -1.0	<u>-0.8</u> -0.7	<u>-1.2</u> -0.9	=	=	=	=	
		<u>90°</u>	<u>1.05</u>	<u>1.3</u>	<u>3 1.05</u>	<u>1.3</u>	<u>-0.7</u>	<u>-0.9</u>	<u>-0.7</u>	<u>-0.9</u>		<u> </u>	_	-	
	B	<u>0° to 90°</u>	<u>-0.85</u>	<u>-0.</u>	9 -1.3	<u>-2.0</u>	<u>-0.7</u>	<u>-1.0</u>	<u>-0.85</u>	<u>-0.9</u>	<u>0.75</u>	<u>1.15</u>	-0.55	<u>0.8</u>	
	 Notes to Table 4.1.7.6.: (1) For values of roof slope not shown, the coefficient C_gC_p can be interpolated linearly (2) Positive coefficients denote forces toward the surface, whereas negative coefficient denote forces away from the surface. 10) The wind loads on balcony guards on low buildings shall be as specified in Sentence 4.1.7.5.(5) and (6). 									<u>arly.</u> ients ences					
	<u>11)</u> The wind loads on parapets on low <i>buildings</i> shall be as specified in Sentences 4.1.7.5.(7) to (9).										<u>5.(7)</u>				
4.1.7.7. Internal Pressure Coefficient	4.1.7.7	'. Internal F	Pressur	re C	oefficie	ent									
1) The internal pressure coefficient, C _{pi} , shall be as prescribed in Table 4.1.7.7.	1) The	internal pre	essure	coef	ficient,	C _{pi} , <u>for</u>	<u>buildin</u>	<u>gs</u> shal	l be as p	orescri	ibed in	Table	4.1.7.	7.	
	2) The internal pressure coefficient, C _{pi} , for cladding on parapets shall be –0.70 to +0.70. (See Note A-4.1.7.7.(2).)											<u>See</u>			
4.1.7.8. Dynamic Procedure	4.1.7.8	3. Dynamic	Proced	dure	9										
4) For the design of the main structural system, Cg shall be calculated as follows:	4) For	the design	of the n	nain	structu	ral sys	tem, Co	g shall I	be calcu	lated a	as follo	ows:			
s = size reduction factor calculated as $\frac{\pi}{3} \left[\frac{1}{1 + \frac{8f_{\rm n}H}{3V_{\rm H}}} \right] \left[\frac{1}{1 + \frac{10f_{\rm n}W}{V_{\rm H}}} \right]$,	s =	= size reduc	tion fac	ctor o	calculat	ed as $\frac{1}{3}$	$\frac{1}{8} \left[\frac{1}{1 + \frac{8f_{\rm nD}}{3V_{\rm H}}} \right]$	$\left[\frac{1}{1+\frac{10}{1+1$	$\left[\frac{1}{V_{\rm fnD}W}\right],$						
F = gust energy ratio calculated as $\frac{1}{(1+x_0^2)^{4/3}}$, where $x_0 = (1 \ 220 \ \text{fm/VH})$, and B = where	F = B = where	= gust ener(=	gy ratio	cald	culated	as $\frac{1}{(1+x)}$	$\left(\frac{1}{2}\right)^{4/3}, W$	nere x₀	= (1 220	0 fn <u>D</u> /V	́н), and	d			
$f_{nD} =$ $F_n =$ lowest natural frequency of the <i>building</i> , in Hz, as defined in Sentences 4.1.7.2.(2) and (3),	f _{nD}	= = lowest na (3),	atural fro	eque	ency of	the <i>bu</i>	ilding, i	n Hz, a	s define	d in Se	entenc	æs 4.1	.7.2.(2)) and	
where	where										[_			
\overline{V} = reference wind speed at a height of 10 m, in m/s, calculated as $\sqrt{\frac{2 \cdot 1_{W} \cdot q}{\rho}}$,	<u>V</u> =	= reference	wind sp	peec	d at a h	eight of	⁻ 10 m,	in m/s,	calculat	ted as	$\sqrt{\frac{2 - l_W}{\rho}}$	<u>1</u> ,			
wnere	where														

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
$I_W = importance factor,$	I _w = importance factor for wind load, as provided in Table 4.1.7.3.,
4.1.7.9. Full and Partial Wind Loading	4.1.7.9. Full and Partial Wind Loading
 1) Except where the wind loads are derived from the combined C_pC_g values determined in accordance with Article 4.1.7.6., <i>buildings</i> and structural members shall be capable of withstanding the effects of the following loads: a) the full wind loads acting along each of the 2 principal horizontal axes considered separately, b) the wind loads described in Clause (a) but with 100% of the load removed from any one portion of the area, c) the wind loads described in Clause (a) but with both axes considered simultaneously at 75% of their full value, and d) the wind loads described in Clause (c) but with 50% of these loads removed from any portion of the area. 	 1) Except where the wind loads are derived from the combined G_pC_gC_p values determined in accordance with Article 4.1.7.6., <i>buildings</i> and structural members shall be capable of withstanding the effects of the following loads: a) the full wind loads acting along each of the 2 principal horizontal axes considered separately, b) 75% of the wind loads described in Clause (a) but with 100% of the load removed from any one portion of the area offset from the central geometric axis of the <i>building</i> by 15% of its width normal to the direction of the force to produce the worst load effect, c) 75% of the wind loads described in Clause (a) but with both axes considered simultaneously at 75% of their full value, and d) 56% of the wind loads described in Clause (ea) but with 50% of these loads removed from the central geometric axis of the building by 15% of its width normal to the direction of the second of the second of the direction of the force. (See Note A-4.1.7.9.(1).)
N/A	 4.1.7.12. Attached Canopies on Low Buildings with a Height H ≤ 20 m (See Note A-4.1.7.12.) 1) For the purposes of this Article, "attached canopy" shall mean a horizontal canopy with a maximum slope of 2% that is attached to a <i>building</i> wall at any height, h_c, above ground level. 2) The specified external wind pressure, p, and the specified net external wind pressure, p_{net}, for attached canopies on exterior walls of low <i>buildings</i> with a height H ≤ 20 m shall be determined as follows:
	$\frac{p = I_wqC_eC_tC_gC_p, and}{p_{net} = I_wqC_eC_t(C_gC_p)_{net}}$
	wherep = specified external wind pressure acting statically and in a direction normal to the upper or lower surface of the canopy, considered positive when acting towards the surface and negative when acting away from the surface,pnet = specified net external wind pressure acting statically on the canopy, considered positive when acting in a downward direction and negative when acting in an upward
	Figure 4.1.7.12A Gust pressure coefficients on the upper and lower surfaces of attached canopies with no gap between the canopy and the building Forming Part of Sentence 4.1.7.12.(2)

PART 4 – CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	
	Notes to Figure 4.1.7.12 -B:	
	 (1) The coefficients apply for any roof slope, α. (2) The reference height, h, is the mid-height of the roof or 6 m, whichever is greater. (3) Positive (C_qC_p)_{net} values denote net forces acting in a downward direction on the canopy, whereas negative (C_qC_p)_{net} values denote net forces acting in an upward direction on the 	
	canopy. The canopy must be designed to resist both the positive and negative net forces.	
N/A	4.1.7.13. Roof-Mounted Solar Panels on Buildings of Any Height (See Note A-4.1.7.13.)	
	1) Where solar panels are installed on a roof, the roof wind loads shall account for the wind loads on the solar panels, as determined in accordance with Sentences (2) to (7), or shall be determined in the same way as for the roof without solar panels, whichever approach results in the most critical effect.	
	2) For an array of solar panels where the panels are installed close and parallel to the roof surface with their upper surface not more than 250 mm above the roof surface and with gaps around the panels of not less than 6 mm, the net positive or negative pressure difference between the upper and lower surfaces of a panel or the array shall be calculated as follows:	
	$\mathbf{p} = \mathbf{I}_{W}\mathbf{q}\mathbf{C}_{e}\mathbf{C}_{t}\mathbf{C}_{g}\mathbf{C}_{p}\mathbf{E}\mathbf{\gamma}_{a}$	
	$\frac{\text{where}}{\text{lw, q,C_e, C_t, C_g, C_p}} = \text{as defined in Sentence 4.1.7.3.(1), determined in the same manner as for the roof cladding,} \\ \underline{E} = \text{edge factor, as provided in Sentence (4), and} \\ \underline{\gamma_a} = \text{pressure equalization factor, as provided in Sentence (3).} \end{cases}$	
	 3) The pressure equalization factor, γ_a, in Sentence (2) shall be a) for a panel or an array where the panel chord length, L_p, is greater than 2 m or for a panel or an array that is within a distance of 2h₂ from the roof edge or ridge, where h₂ 	

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
	is the height of the panel's highest point above the roof surface, taken as 1.0, and
	b) for other panels or arrays, determined from Figure 4.1.7.13A based on the area of the
	panel or array over which the wind load is being calculated.
	Figure 4.1.7.13A
	Pressure equalization factor, v _a , for solar panels or arrays mounted on roofs of
	buildings of any height
	Forming Part of Clause $4.1.7.13$ (3)(b)
	11
	2 0.6
	ĕ 0.5 + + + + + + + + + + + + + + + + + + +
	1 10 100
	Area, m* EG007018
	1) The edge factor E in Contenes (2) shall be taken as
	4) The edge factor, E, in Sentence (2) shall be taken as
	$\frac{a}{1.5}$ within a distance of $1.5L_p$ from an exposed edge of the array of solar panels, as
	h) 10 elecutors
	<u>b) 1.0 eisewhere.</u>
	E) For the number of Clause $(1)(a)$, an expressed edge of the energy of color penale shall be
	5) For the purposes of Clause (4)(a), an exposed edge of the array of solar panels shall be
	<u>considered to occur</u>
	a) where the distance to the next row of panels of the distance across a gap in the same
	h) where the distance to the reaf edge exceeds 4h, or 1.2 m, which ever is greater, or
	b) where the distance to the foor edge exceeds 4h2 of 1.2 m, whichever is greater, and
	exceeds 0.5h, where his the reference height of the root.
	6) For an array of color papels mounted on a reaf with a clone, α loss than or equal to 7°
	o For all allay of solar panels mounted on a foot with a slope, u, less than of equal to 7, where the penels are tilted relative to the reaf surface, have a short length 1, not greater than
	2 m and are installed such that the beight of their lowest point above the reaf surface. by in pat
	Z III, and are installed such that the neight of their howest point above the roof surface, h, is not greater
	greater than 0.6 m, the height of their highest point above the root surface, hz, is not greater
	than 1.2 m, and their till angle relative to the roof surface, ω , is not greater than 35, or where the normalized parallel to the roof surface with their upper surface greater than 35.
	the panels are installed parallel to the root surface with their upper surface greater than 250
	mm above the root surface and with gaps not less than 6 mm between the panels, the net
	positive of negative pressure difference between the upper and the lower surfaces of a panel
	or the array shall be calculated as follows:
	<u> Pnet = IwqUeUt(UgUp)net</u>
	I_W , q,C _e , C _t = as defined in Sentence 4.1.7.3.(1), determined in the same manner as for the roof
	cladding, and
	$(C_{g}C_{p})_{net}$ = net gust pressure coefficient, as provided in Sentence (7).
	<u>7) The net gust pressure coefficient, $(C_gC_p)_{net}$, in Sentence (6) shall be calculated as follows:</u>
	$(C_g C_p)_{net} = \pm \gamma_P \gamma_c E(C_g C_p)_n$

	PART 4 – CODE UPDATE INFORMATION	
NBC(AE) 2019	NBC(AE) 2023	
	$\frac{\text{where}}{\text{y}_{\text{p}} = \text{parapet factor, determined as the lesser of 1.2 and (0.9 + h_{\text{pl}}/h),}{\text{y}_{\text{c}} = \text{chord factor, determined as the greater of (0.6 + 0.2L_{\text{o}}) and 0.8,}{\text{E} = \text{as defined in Sentence (2), and}}$ $\frac{\text{(C}_{0}C_{\text{p}})_{n} = \text{normalized gust pressure coefficient, determined from Figure 4.1.7.13B based on } \omega \\ \text{and } A_{\text{N}} \\ \frac{\text{where}}{\text{h}_{\text{pl}} = \text{height of the parapet above the roof surface, in m,}}{\text{h} = \text{reference height of the roof, in m,}}{\text{L}_{\text{p}} = \text{panel chord length, in m,}}{\text{where}} \\ A_{\text{N}} = \text{normalized panel or array area, calculated as } A_{\text{N}} = \frac{1000\text{A}}{\text{max}(\text{L}_{\text{p}}^{2}\text{.25})} \\ \frac{\text{where}}{\text{A} = \text{panel or array area over which the wind load is being calculated, in m^{2}, and}{\text{L}_{\text{b}} = \text{normalized building length, in m, determined as the lesser of (0.4}{\sqrt{hW_{1}}}), \text{h and } W_{\text{s}}, \\ \frac{\text{where}}{\text{WL} = \text{longest horizontal dimension of the building, in m, and}}{\text{W}_{\text{s}} = \text{smallest horizontal dimension of the building, in m, and}} \\ \frac{\text{Figure 4.1.7.13B}}{\text{Forming Part of Sentence 4.1.7.13.(7)}} \\ \text{Normalized gust pressure coefficient, (C_{g}C_{p})_{p}, for solar panels or arrays mounted on}} \\ \frac{\text{low-sloped roofs of buildings of any height}}{\text{Forming Part of Sentence 4.1.7.13.(7)}} \\ \text{where} \\ \text{Mormalized panel or of solar panels or array mounted on} \\ \text{Mormalized panel built pressure coefficient, for solar panels or arrays mounted on}} \\ \text{Mormalized gust pressure coefficient, for solar panels or arrays mounted on}} \\ \text{Mormalized panel pressure coefficient, for solar panels or arrays mounted on} \\ \text{Mormalized part of Sentence 4.1.7.13.(7)} \\ \text{Mormalized panel pressure coefficient, for solar panels or arrays mounted on} \\ \text{Mormalized panel pressure coefficient, for solar panels or arrays mounted on} \\ \text{Mormalized panel pressure coefficient, for solar panels or arrays mounted on} \\ Mormalized panel pa$	

	PART 4 – CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	44 4 4 4 4 4 4 4 4 4		
	Normalized area, A_N $0^\circ \le \omega \le 5^\circ$ $0^\circ \le \omega \le 35^\circ$ Normalized area, A_N $15^\circ \le \omega \le 35^\circ$		
	Notes to Figure 4.1.7.13B: EGOUTRES (1) H = height of the building. (2) h = reference height of the roof. (3) $(C_qC_p)_n$ values are for both positive and negative values. (4) For panels with 5° < ω < 15°, linear interpolation is permitted.		
4.1.8.1. Analysis	4.1.8.1. Analysis		
 2) Where I_EF_sS_a(0.2) and I_EF_sS_a(2.0) are less than 0.16 and 0.03 respectively, the deflections and specified loading due to earthquake motions are permitted to be determined in accordance with Sentences (3) to (15), where a) I_E is the earthquake importance factor and has a value of 0.8, 1.0, 1.3 and 1.5 for <i>buildings</i> of Low, Normal, High and Post-Disaster importance respectively, b) F_a is the site coefficient based on the average N₁, or s₁ as defined in Article 4.1.8.2 	 2) Where IEF_sS_a(0.2,X450) and IEF_sS_a(2.0,X450) are less than 0.16 and 0.03 respectively, the deflections and specified loading due to earthquake motions are permitted to be determined in accordance with Sentences (3) to (15), where a) IE is the earthquake importance factor and has a value of 0.8, 1.0, 1.3 and 1.5 for <i>buildings</i> of in the Low, Normal, High and Post-Delisaster importance Categories respectively, b) Fe is the site coefficient based on the average N 		
for the top 30 m of <i>soil</i> below the footings, pile-caps, or mat <i>foundations</i> and has a value of i) 1.0 for <i>rock</i> sites or when $\overline{N}_{e0} > 50$ or $s_{u} > 100$ kPa.	4.1.8.2., for the top 30 m of <i>soil</i> below the footings, pile <u>pile</u> caps, or mat <i>foundations</i> and has a value of i) 1.0 for <i>rock</i> sites or when $\overline{N}_{60} > 50$ or $\varepsilon_{H} \overline{s}_{0} > 100$ kPa.		

PART 4 – CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	
 ii) 1.6 when 15 ≤ N₆₀ ≤ 50 or 50 kPa ≤ s_u ≤ 100 kPa, and iii) 2.8 for all other cases, and c) S_a(T) is the 5% -damped spectral response acceleration value for period T, determined in accordance with Subsection 1.1.3. 	 ii) 1.6 when 15 ≤ N₆₀ ≤ 50 or 50 kPa ≤ s_u ≤ 100 kPa, and iii) 2.8 for all other cases, and c) S_a(T,X450) is the 5% -damped spectral response acceleration value for at period T, for site designation X450, as defined in Article 4.1.8.2., determined in accordance with Subsection 1.1.3. and corresponding to a 2% probability of exceedance in 50 years. 	
 3) The structure shall have a clearly defined a) Seismic Force Resisting System (SFRS) to resist the earthquake loads and their effects, and b) load path (or paths) that will transfer the inertial forces generated by the earthquake to the <i>foundations</i> and supporting ground. 5) The height above <i>grade</i> of SFRS designed in accordance with CSA S136, "North American Specification for the Design of Cold-Formed Steel Structural Members (using the Appendix B provisions applicable to Canada)," shall be less than 15m. 	 3) The structure shall have a clearly defined a) <u>Seeismic Fforce Rresisting Seystem</u> (SFRS) to resist the earthquake loads and their effects, and b) load path (or paths) that will transfer the inertial forces generated by the in an earthquake to the <i>foundations</i> and supporting ground. 5) The height above <i>grade</i> of <u>an</u>_SFRS designed in accordance with CSA S136, "North American Specification for the Design of Cold-Formed Steel Structural Members (using the Appendix B provisions applicable to Canada)," shall be less than 15 m. 	
7) The minimum lateral earthquake design force, V_s , at the base of the structure in the direction under consideration shall be calculated as follows:	7) The minimum specified lateral earthquake design force, V_s , at the base of the structure in the direction under consideration shall be calculated as follows:	
$V_s = F_s S_a(T_s) I_E W_t / R_s$	Vs = FsSa(Ts <u>, X450</u>)IEW⊮Rs	
where $S_a(T_s) = value of S_a at T_s determined by linear interpolation between the value of S_a at 0.2 s, 0.5 s, and 1.0 s, and = S_a(0.2) for T_s \le 0.2 s,$ $W_t = sum of W_i$ over the height of the <i>building</i> , where W_i is defined in Article 4.1.8.2., and $R_s = \dots$ where $T_s = fundamental lateral period of vibration of the building, as defined in Article 4.1.8.2., = 0.085(h_n)^{\%} for steel moment frames,= 0.075(h_n)^{\%} for concrete moment frames,= 0.025h_n for braced frames, and= 0.025h_n for braced frames, and= 0.025(h_n)^{\%} for shear walls and other structures,where h_n = height above the base, in m, as defined in Article 4.1.8.2., except that V_s shall not be less than F_sS_a(1.0)I_EW_rR_s and, in cases where R_s = 1.5, V_s need not be greater than F_sS_a(0.5)I_EW_rR_s.$	where $\begin{split} & S_a(T_{s_1}\underline{X_{450}}) = value of S_a\text{-at-}(T_{s_1}\underline{X_{450}}) \text{ determined by linear interpolation between the value } \\ & \underline{values of S_a\text{-at-}0.2\ s_{\circ}\ 0.6\ s_{\circ}\ and\ 1.0\ s_{\circ}\ and\ (0.2,X_{450)},\ S_a(0.5,X_{450})\ and\ S_a(1.0,X_{450}), \\ & = S_a(0.2,\underline{X_{450}})\ for T_s \leq 0.2\ s_{\circ}\ and \\ & = S_a(1.0,X_{450})\ for T_s \geq 1.0\ s_{\circ} \\ & W_t = sum of W_i over the height of the \textit{building}, where W_i is defined in Article 4.1.8.2., and \\ & R_s = \ldots \\ & Where \\ & T_s = \\ & fundamental lateral period of vibration of the \textit{building}, as defined in Article \\ 4.1.8.2., \\ & = \\ & 0.085(h_n)^{\frac{v}{4}} for steel moment frames, \\ & = \\ & 0.075(h_n)^{\frac{v}{4}} for concrete moment frames, \\ & = \\ & 0.025h_n for ther moment frames, \\ & = \\ & 0.025h_n for shear walls and other structures, \\ \end{aligned} \\ where \\ & h_n = height, in m, above the base, in m, to level n, as defined in Article \\ & 4.1.8.2., except that \\ & V_s shall not be less than F_s S_s(1.0) leW/R_s and, in cases where R_s = 1.5, V_s need not be \\ & greater than F_s S_a(0.5) leW/R_s and \\ N = total number of storeys above exterior \mathit{grade to level } n, as defined in Article \\ 4.1.8.2., \\ & except that, in cases where R_s = 1.5, V_s need not be greater than F_s S_a(0.5,X_{450}) leW/R_s. \end{aligned}$	
8) The total lateral earthquake design force, V_s , shall be distributed over the height of the <i>building</i> in accordance with the following formula:	8) The total specified lateral earthquake design force, Vs, shall be distributed over the height of the <i>building</i> in accordance with the following formula:	
$F_{x} = V_{s}W_{x}h_{x} / \left(\sum_{i=1}^{n} W_{i}h_{i}\right)$	$F_{x} = V_{s}W_{x}h_{x} / \left(\sum_{i=1}^{n} W_{i}h_{i}\right)$	
where $F_x = \text{force applied through the centre of mass at level x,}$ W_x , W_i portion of W that is located at or is assigned to level x or i respectively, and h_x , $h_i = \text{height}$, in m, above the base of level x and level i as per Article 4.1.8.2.	where F _x = force applied through the centre of mass at level x, W _x , W _i = portion of W that is located at or is assigned to level x or i respectively, and h _x , h _i = height, in m, above the base <u>of to</u> level x <u>and level or</u> i <u>respectively</u> , as <u>per defined in</u> Article 4.1.8.2.	

13) Except as provided in Sentence (14), where cantilever parapet walls, other cantilever walls, exterior ornamentation and appendages, towers, chimneys or penthouses are connected to or form part of a *building*, they shall be designed, along with their connections, for a lateral force,
 13) Except as provided in Sentence (14), where cantilever parapet walls, other cantilever walls, exterior ornamentation and appendages, towers, chimneys or penthouses are connected to or form part of a *building*, they shall be designed, along with their connections, for a lateral force,

PART 4 – CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	
Vsp, distributed according to the distribution of mass of the element and acting in the lateral direction that results in the most critical loading for design using the following equation:	Vsp, distributed according to the distribution of mass of the element and acting in the lateral direction that results in the most critical loading for design using the following equation:	
$V_{sp} = 0.1 F_s I_E W_p$	$V_{sp} = \frac{0.1 S_a(0.2, X_{450})}{S_a I_E W_p}$	
where	where	
W_p = weight of a portion of a structure as defined in Article 4.1.8.2.	W_p = weight of a portion of a structure as defined in Article 4.1.8.2.	
4.1.8.2. Notation	4.1.8.2. Notation	
1) In this Subsection	1) In this Subsection	
 A_r = response amplification factor to account for type of attachment of mechanical/electrical equipment, as defined in Sentence 4.1.8.18.(1), A_x = amplification factor at level x to account for variation of response of mechanical/electrical equipment with elevation within the <i>building</i>, as defined in Sentence 4.1.8.18.(1), B_x = B = 	 A_r = response element or component force amplification factor to account for type of attachment-of mechanical/electrical equipment, as defined in Sentence 4.1.8.18.(1), A_x = amplification height factor at level x to account for variation of response of mechanical/electrical equipment an element or component with elevation within the <i>building</i>, as defined in Sentence 4.1.8.18.(1), B_x = B = 	
C _p = seismic coefficient for mechanical/electrical equipment, as defined in Sentence 4.1.8.18.(1),	C _p = seismic coefficient for mechanical/electrical equipment an element or component, as defined in Sentence 4.1.8.18.(1),	
$D_{nx} = \dots$	$D_{nx} = \dots$	
$e_x =$ F_a = site coefficient for application in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7),	 e_x = F_a = <u>acceleration-based</u> site coefficient for application <u>in standards referenced</u> in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7), 	
F(PGA) = site coefficient for PGA, as defined in Sentence 4.1.8.4.(5), F(PGV) = site coefficient for PGV, as defined in Sentence 4.1.8.4.(5), F = -	F(PGA) = site coefficient for PGA, as defined in Sentence 4.1.8.4.(5), F(PGV) = site coefficient for PGV, as defined in Sentence 4.1.8.4.(5), F _	
$F_{s} =$ $F(T) = site coefficient for spectral acceleration, as defined in Sentence 4.1.8.4.(5), F_{t} =$	$F_s =$ $F(T) = site coefficient for spectral acceleration, as defined in Sentence 4.1.8.4.(5), F_t =$	
F_v = site coefficient for application in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7),	$F_v = $ <u>velocity-based</u> site coefficient for application <u>in standards referenced</u> in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7),	
 F_x = h_i, h_n, h_x = the height above the base (i = 0) to level i, n, or x respectively, where the base of the structure is the level at which horizontal earthquake motions are considered to be imparted to the structure, h_s = interstorey height (h_i - h_{i-1}), 	 F_x = h_i, h_n, h_x = the height, in m, above the base (i = 0) to level i, n, or x respectively, where the base of the structure is the level at which horizontal earthquake motions are considered to be imparted to the structure, h_s = interstorey storey height (h_i - h_{i-1}), I_E = 	
M_v = factor to account for higher mode effect on base shear, as defined in Sentence 4.1.8.11.(6),	M _v = factor to account for higher mode <u>effect effects</u> on base shear, as defined in Sentence 4.1.8.11.(6),	
 N = N N N Average Standard Penetration Resistance for the top 30 m, corrected to a rod energy efficiency of 60% of the theoretical maximum, PGA = Peak Ground Acceleration, expressed as a ratio to gravitational acceleration, as defined in Sectore 4.1.8.4.(1) 	$\overline{N}_{60} = A\underline{a}$ verage <u>S</u> standard <u>P</u> penetration <u>R</u> resistance <u>for</u> , in blows per 0.3 m, in the top 30 m of soil, corrected to a rod energy efficiency of 60% of the theoretical maximum, PGA(X) = <u>P</u> peak <u>G</u> ground <u>Aa</u> cceleration, expressed as a ratio to gravitational acceleration, for site designation X as defined in Septence 4.1.8.4 (1)	
PGA _{ref} = reference PGA for determining $F(T)$, $F(PGA)$ and $F(PGV)$, as defined in Sentence 4.1.8.4.(4).	PGA _{ref} = reference PGA for determining F(T), F(PGA) and F(PGV), as defined in Sentence 4.1.8.4.(4).	
PGV = Peak Ground Velocity, in m/s, as defined in Sentence 4.1.8.4.(1),	PGV(X) = Ppeak Ground Velocity, in m/s, for site designation X, as defined in Sentence 4.1.8.4.(1),	
 PI = plasticity index for clays, R_d = ductility-related force modification factor reflecting the capability of a structure to dissipate energy through reversed cyclic inelastic behaviour, as given in Article 4.1.8.9., 	 PI = plasticity index for-clays soil, Rd = ductility-related force modification factor reflecting the capability of a structure to dissipate energy through reversed cyclic inelastic behaviour, as given defined in Article 4.1.8.9., 	
$\kappa_0 = \dots$		
R _s =	$R_s = \dots$ $S_a(T,X) = 5\%$ -damped spectral response acceleration, expressed as a ratio to gravitational acceleration, at period T for site designation X as defined in Sectores 4.1.8.4.(1)	
S _p =	SC = Seismic Category assigned to a building based on its Importance Category and the	

PART 4 – CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	
S(T) = design spectral response acceleration, expressed as a ratio to gravitational	design spectral acceleration values at periods of 0.2 s and 1.0 s, as defined in Article	
acceleration, for a period of T, as defined in Sentence 4.1.8.4.(9),	<u>4.1.8.5.,</u>	
$S_a(T) = 5\%$ damped spectral response acceleration, expressed as a ratio to gravitational	SFRS = $\frac{1}{2}$ Seismic $\frac{1}{2}$ force $\frac{1}{2}$ resisting $\frac{1}{2}$ system $\frac{1}{2}$ that part of the structural system that has	
acceleration, for a period of T, as defined in Sentence 4.1.8.4.(1),	been considered in the design to provide the required resistance to the earthquake	
SFRS = Seismic Force Resisting System(s) is that part of the structural system that has been	forces and effects defined in Subsection 4.1.8.,	
considered in the design to provide the required resistance to the earthquake forces	S _p =	
and effects defined in Subsection 4.1.8.,	S(T) = design spectral response acceleration, expressed as a ratio to gravitational	
s_u = average undrained shear strength in the top 30 m of <i>soil</i> ,	acceleration, for a at period of T, as defined in Sentence 4.1.8.4.(96),	
T = period in seconds,	$s\bar{s}_u$ = average undrained shear strength, in kPa, in the top 30 m of soil,	
$T_a = \dots$	$T = period_i in \frac{seconds_s}{s}$	
Ts = fundamental lateral period of vibration of the <i>building</i> or structure, in s, in the direction	$T_a = \dots$	
under consideration, as defined in Sentence 4.1.8.1.(7),	$IDD = +\underline{t}otal + \underline{d}esign $	
IX = floor torque at level X, as defined in Sentence 4.1.8.11.(11),	above the isolation system, obtained by calculating the mean + (IE × the standard	
IDD = Total Design Displacement of any point in a seismically isolated structure, within or	deviation) of the peak horizontal displacements from all sets of ground motion time	
above the isolation system, obtained by calculating the mean $+$ (IE x the standard deviation) of the peak berizontal displacements from all sets of ground motion	nistories analyzed, but not less than Vie x the mean, where the peak horizontal	
bistorios analyzed, but not loss than $\sqrt{1-x}$ the mean where the peak horizontal	displacement is based on the vector sum of the two onnogonal nonzontal	
displacement is based on the vector sum of the two orthogonal berizontal	T_{c} = fundamental lateral period of vibration of the <i>building</i> or structure in s in the direction	
displacements considered for each time step	under consideration, as defined in Sentence 4.1.8.1.(7)	
displacements considered for each time step,	Tx = floor torque at level x, as defined in Sentence 4.1.8.1.(7),	
V - lateral earthquake design force at the base of the structure, as determined by Article	V = specified lateral earthquake design force at the base of the structure as determined	
$4 \pm 8 \pm 11$	by in Article 4 1 8 11	
V_{d} = lateral earthquake design force at the base of the structure as	$V_d = specified lateral earthquake design force at the base of the structure as determined$	
determined by Article 4 1 8 12	by in Article 4 1 8 12	
V_{e} = lateral earthquake elastic force at the base of the structure, as determined by Article	V_{e} = lateral earthquake elastic force at the base of the structure as determined by in Article	
4.1.8.12	4.1.8.12	
V_{ed} = lateral earthquake design elastic force at the base of the structure, as determined by	V_{ed} = adjusted lateral earthquake design elastic force at the base of the structure, as	
Article 4.1.8.12.,	determined by in Article 4.1.8.12.,	
$V_{\rm p}$ = lateral force on a part of the structure, as determined by Article 4.1.8.18.,	V_p = specified lateral earthquake force on a part of the structure an element or component,	
	as determined by in Article 4.1.8.18.,	
V_s = lateral earthquake design force at the base of the structure, as determined by	$V_s = \frac{specified}{specified}$ lateral earthquake $\frac{specified}{specified}$ force at the base of the structure, as determined	
Sentence 4.1.8.1.(7), for application in Article 4.1.8.1.,	by in Sentence 4.1.8.1.(7), for application in Article 4.1.8.1.,	
\overline{V}_{s30} = average shear wave velocity in the top 30 m of soil or rock,	$-\overline{V}_{s30}$ = average shear wave velocity, in m/s, in the top 30 m of soil or rock,	
W = dead load, as defined in Article 4.1.4.1., except that the minimum partition load as	W = <u>specified</u> dead load, as defined in Article 4.1.4.1., except that the minimum partition	
defined in Sentence 4.1.4.1.(3) need not exceed 0.5 kPa, plus 25% of the design	load-weight as defined in Sentence 4.1.4.1.(3) need not exceed 0.5 kPa, plus 25% of	
snow load specified in Subsection 4.1.6., plus 60% of the storage load for areas used	the design specified snow load specified as defined in Subsection 4.1.6., plus 60% of	
for storage, except that storage garages need not be considered storage areas, and	the storage load for areas used for storage, except that storage garages need not be	
the full contents of any tanks (see Note A-4.1.8.2.(1)),	considered storage areas, and the full contents of any tanks (see Note A-4.1.8.2.(1)),	
$W_i, W_x = \dots$	$W_i, W_x = \dots$	
$W_p = \dots$	W _p =	
W_t = sum of WI over the height of the <i>building</i> , for application in Sentence 4.1.8.1.(7),	$W_t = sum of W_i over the height of the building, for application in Sentence 4.1.8.1.(7),$	
	<u>X = site designation, either Xv or Xs</u> ,	
	$X_{\rm S}$ = site designation in terms of Site Class, where S is the Site Class determined in	
	accordance with Sentence 4.1.8.4.(3).	
	X_V = site designation in terms of v_{s30} , where v is the v_{s30} value calculated from in situ	
	niedsurements of shear wave velocity,	
δ	$\frac{7450}{8} = \frac{5100}{100} \frac{1000}{100} 1$	
$\Delta_{\text{aver}} = \dots$	$\delta_{ave} = \dots$	
4.1.8.4. Site Properties	4.1.8.4. Site Properties	
1) The peak ground acceleration (PGA), peak ground velocity (PGV), and the 5% damped	1) The For site designation X, as determined in accordance with Sentence (2) or (3), the peak	
spectral response acceleration values, Sa(T), for the reference ground conditions (Site Class C	ground acceleration, (PGA(X), the peak ground velocity, (PGV(X), and the 5% -damped	
in Table 4.1.8.4A) for periods T of 0.2 s, 0.5 s, 1.0 s, 2.0 s, 5.0 s and 10.0 s shall be	spectral response acceleration values, $S_a(T, X)$, for the reference ground conditions (Site Class	
determined in accordance with Subsection 1.1.3. and are based on a 2% probability of	C in Table 4.1.8.4A) for), at periods T of 0.2 s, 0.5 s, 1.0 s, 2.0 s, 5.0 s and 10.0 s shall	
exceedance in 50 years.	a) except as provided in Sentence (4), be determined in accordance with Subsection	
	1.1.3., and are based on	
	b) except as provided in Article 4.1.8.23, correspond to a 2% probability of exceedance	

PART 4 – CODE UPDATE INFORMATION						
NBC(AE) 2019	NBC(AE) 2023					
	in 50 years.					
Table 4.1.8.4ASite Classification for Seismic Site ResponseForming Part of Sentences 4.1.8.4.(1) to (3)	Table 4.1.8.4ASite Classification for Seismic Site ResponseForming Part of Sentences 4.1.8.4.(1) to (3)					
*** Table A-4.1.8.4A not shown ***	*** Table 4.1.8.4A Deleted***					
2) Site classifications for ground shall conform to Table 4.1.8.4A and shall be determined using \overline{V}_{s30} , orwhere \overline{V}_{s30} is not known, using Sentence (3).	2) Site classifications for ground shall conform to Table 4.1.8.4A and shall be determined using \overline{V}_{sso} , orwhere \overline{V}_{sso} is not known, using Sentence (3).					
3) If average shear wave velocity, \overline{V}_{s30} , is not known, Site Class shall be determined from energy-corrected Average Standard Penetration Resistance, \overline{N}_{60} , or from <i>soil</i> average undrained shear strength, s_u , as noted in Table 4.1.8.4A, \overline{N}_{60} and s_u being calculated based on rational analysis. (See Note A-4.1.8.4.(3) and Table 4.1.8.4A.)	3) If average shear wave velocity, \overline{V}_{sso} , is not known, Site Class shall be determined from energy-corrected Average Standard Penetration Resistance, \overline{N}_{60} , or from <i>soil</i> average undrained shear strength, s_{u} , as noted in Table 4.1.8.4A, \overline{N}_{60} and s_{u} being calculated based on rational analysis. (See Note A-4.1.8.4.(3) and Table 4.1.8.4A.)					
 4) For the purpose of determining the values of F(T) to be used in the calculation of design spectral acceleration, S(T), in Sentence (9), and the values of F(PGA) and F(PGV), the value of PGA_{ref} to be used with Tables 4.1.8.4B to 4.1.8.4I shall be taken as a) 0.8 PGA, where the ratio Sa(0.2)/PGA < 2.0, and b) PGA, otherwise. 	 4) For the purpose of determining the values of F(T) to be used in the calculation of design spectral acceleration, S(T), in Sentence (9), and the values of F(PGA) and F(PGV), the value of PGA_{ref} to be used with Tables 4.1.8.4B to 4.1.8.4I shall be taken as a) 0.8 PGA, where the ratio Sa(0.2)/PGA < 2.0, and b) PGA, otherwise. 					
5) The values of the site coefficient for design spectral acceleration at period T, F(T), and of similar coefficients F(PGA) and F(PGV) shall conform to Tables 4.1.8.4B to 4.1.8.4I using linear interpolation for intermediate values of PGAref.	5) The values of the site coefficient for design spectral acceleration at period T, F(T), and of similar coefficients F(PGA) and F(PGV) shall conform to Tables 4.1.8.4B to 4.1.8.4I using linear interpolation for intermediate values of PGAref.					
6) Site-specific evaluation is required to determine F(T), F(PGA) and F(PGV) for Site Class F. (See Note A-4.1.8.4.(3) and Table 4.1.8.4A.)	6) Site-specific evaluation is required to determine F(T), F(PGA) and F(PGV) for Site Class F. (See Note A-4.1.8.4.(3) and Table 4.1.8.4A.)					
7) For all applications in Subsection 4.1.8., $F_a = F(0.2)$ and $F_v = F(1.0)$.	7) For all applications in Subsection 4.1.8., $F_a = F(0.2)$ and $F_v = F(1.0)$.					
8) For structures with a fundamental period of vibration equal to or less than 0.5 s that are built on liquefiable <i>soils</i> , Site Class and the corresponding values of F(T) may be determined as described in Tables 4.1.8.4A, 4.1.8.4B, and 4.1.8.4C by assuming that the <i>soils</i> are not liquefiable. (See Note A-4.1.8.4.(3) and Table 4.1.8.4A.)	8) For structures with a fundamental period of vibration equal to or less than 0.5 s that are bui on liquefiable soils, Site Class and the corresponding values of F(T) may be determined as described in Tables 4.1.8.4A, 4.1.8.4B, and 4.1.8.4C by assuming that the soils are not liquefiable. (See Note A-4.1.8.4.(3) and Table 4.1.8.4A.)					
9) The design spectral acceleration values of S(T) shall be determined as follows, using linear interpolation for intermediate values of T: $S(T) = F(0.2)S_a(0.2) \text{ or } F(0.5)S_a(0.5), \text{ whichever is larger, for } T \le 0.2 \text{ s}$ $= F(0.5)S_a(0.5) \text{ for } T = 0.5 \text{ s}$ $= F(1.0)S_a(1.0) \text{ for } T = 1.0 \text{ s}$ $= F(2.0)S_a(2.0) \text{ for } T = 2.0 \text{ s}$ $= F(5.0)S_a(5.0) \text{ for } T = 5.0 \text{ s}$ $= F(10.0)S_a(10.0) \text{ for } T \ge 10.0 \text{ s}$ $= F(10.0)S_a(10.0) \text{ for } T \ge 10.0 \text{ s}$ $= F(10.0)S_a(10.0) \text{ for } T \ge 10.0 \text{ s}$ $= F(10.0)S_a(10.0) \text{ for } T \ge 10.0 \text{ s}$						
Table 4.1.8.4BValues of F(0.2) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)	Table 4.1.8.4BValues of F(0.2) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)					
*** Table 4.1.8.4B not shown ***	*** Table 4.1.8.4B Deleted ***					
Table 4.1.8.4CValues of F(0.5) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)	Table 4.1.8.4CValues of F(0.5) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)					
*** Table 4.1.8.4C not shown ***	*** Table 4.1.8.4C Deleted ***					
Table 4.1.8.4D Table 4.1.8.4D Values of F(1.0) as a Function of Site Class and PGA _{ref} Values of F(1.0) as a Function of Site Class and PGA _{ref}						

Classification: Protected A

NBC(AE) 2019

Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-D not shown ***

Table 4.1.8.4.-EValues of F(2.0) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-E not shown ***

Table 4.1.8.4.-FValues of F(5.0) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-F not shown ***

Table 4.1.8.4.-G Values of F(10.0) as a Function of Site Class and PGA_{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-G not shown ***

Table 4.1.8.4.-H Values of F(PGA) as a Function of Site Class and PGA_{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-H not shown ***

Table 4.1.8.4.-IValues of F(PGV) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-I not shown ***

PART 4 – CODE UPDATE INFORMATION

NBC(AE) 2023

Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-D Deleted ***

Table 4.1.8.4.-EValues of F(2.0) as a Function of Site Class and PGArefForming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-E Deleted ***

Table 4.1.8.4.-F Values of F(5.0) as a Function of Site Class and PGA_{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-F Deleted ***

Table 4.1.8.4.-G Values of F(10.0) as a Function of Site Class and PGA_{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-G Deleted ***

Table 4.1.8.4.-H Values of F(PGA) as a Function of Site Class and PGA_{ref} Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-H Deleted ***

 Table 4.1.8.4.-I

 Values of F(PGV) as a Function of Site Class and PGA_{ref}

 Forming Part of Sentences 4.1.8.4.(4) and (5)

*** Table 4.1.8.4.-I Deleted ***

2) Except as provided in Sentence (3), the site designation referred to in Sentence (1) shall be determined using the average shear wave velocity, V_{s30} , calculated from in situ measurements of shear wave velocity, as follows:

a) for the ground profiles described in Table 4.1.8.4.-A, the site designation shall be determined in accordance with the Table, and

b) for all other ground profiles, the site designation shall be X_V , where V is the value of $V_{s30.}$

(See Note A-4.1.8.4.(2) and (3).)

Table 4.1.8.4.-A

Exceptions for Site Designation Using V_{s30} Calculated from In Situ Measurements Forming Part of Sentence 4.1.8.4.(2)

Ground Profile Character		
Average Shear Wave Velocity in Top 30 m, V _{s30} , Calculated from In Situ Measurements, in <u>m/s</u>	Additional Characteristics	Site Designation
<u>V_{s30} > 760</u>	Ground profile contains more than 3 m of softer materials between <i>rock</i> and the underside of footing or mat foundations	<u>X760</u>
<u>V_{s30} > 140</u>	Ground profile contains more than 3 m of <i>soil</i> with all the following characteristics: • plasticity index, PI > 20,	XE

PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019			NBC(A	E) 2023	
			moisture conten	<u>t, w ≥ 40%, and</u>	
			 undrained shear 	<u>r strength, s_u < 25 kPa</u>	
			Ground profile conta	<u>uins</u>	
			 liquefiable soil, etc. 	quick and highly sensitiv	/e
			clay, collapsible	weakly cemented soil, o	or
			other soil susce	ptible to failure or collap	se
			under seismic lo	ading.	
	V.	s30 > 140	• more than 3 m c	of peat and/or highly	XE
		330 - 110	organic clay	<u>pour unu/or mgmy</u>	<u></u>
			• more than 8 m c	of highly plastic <i>soil</i> (with	
			Pl > 75) or		-
			• more than 30 m	of soft to medium-stiff	
			clav		
	V	₂₂₀ < 140		n/a	XE
		530 - 140		1//4	
	3) Where	V _{s30} calculated t	from in situ measurem	ents is not available, the	e site designation
	referred to	o in Sentence (1) shall be X _S , where S	is the Site Class detern	nined using the energy-
	corrected	average standa	rd penetration resistar	nce, \overline{N}_{60} , or the average	undrained shear
	strength.	s., in accordance	e with Table 4.1.8.4E	$\overline{\mathbf{N}}_{co}$ and $\overline{\mathbf{s}}_{v}$ being calcu	ulated based on rationa
	analysis	(See Notes A-4	1.8.4.(3) and A-4 1 8 4	1.(2) and (3).)	
	<u></u>			<u>, , , , , , , , , , , , , , , , , , , </u>	
			Table 4	1.8.4B	
			Site Classes, S. for	Site Designation Xs	
			Forming Part of Se	entence 4.1.8.4.(3)	
			Gi	ound Profile Characteri	stics
				Average Standard	
	Site	Ground	Average Shear	Penetration	Average Undrained
	Class, S	Profile	Wave Velocity in	Resistance in Top	Shear Strength in
			<u>1 op 30 m, V_{s30}, in</u>	30 m , $\overline{N}_{co.}$ in Blows	Top 30 m. s., in kPa
			<u>m/s(1)</u>	per 0.3 m	<u> </u>
	Α	Hard rock ⁽²⁾	V _{\$30} > 1.500	n/a	n/a
	B	Rock ⁽²⁾	$760 < V_{e30} < 1.500$	n/a	n/a
		Very dense	$360 < V_{c20} < 760$	\overline{N} > 50	<u>s</u> > 100
	С	soil and soft	000 < 1530 = 100	1160 > 50	<u>50 × 100</u>
	<u> </u>	rock			
	D	Stiff soil	180 < V _{s30} ≤ 360	$15 < \overline{N}_{co} \le 50$	50 < ₹ ≤ 100
			$140 < V_{e30} < 180$	10 < N < 15	40 < s < 50
			$\frac{110 \times 100}{\text{Any around profile of }}$	ther than Site Class E #	hat contains more
			than 3 m of soil with	all the following character	toristics.
	🖕	Soft soil	nlasticity index		tonotioo.
			 plasticity index, moisture conten 	$\frac{1}{2} = \frac{2}{2}$	
			Indrained shee	$\frac{1}{10}, \frac{1}{10} = \frac{1}{10}, \frac{1}{0}, \frac{1}{0}, \frac{1}{0}$	
				$\frac{1}{N} < 10$	ē < 10
			$\frac{v_{s30} \ge 140}{v_{s30} \ge 140}$	$\frac{ \mathbf{N}_{60} \ge \mathbf{U} }{ \mathbf{N}_{60} \ge \mathbf{U} }$	<u>5₁₁ ≥ 40</u>
			Any ground profile the	nat contains	e elevise lleve 9.0
			• ilquetiable soil,	quick and highly sensitiv	ve clay, collapsible
	F	Other soils(3)	weakly cemente	ea soll, or other soll susc	ceptible to failure or
	-		collapse under s	seismic loading,	and a star
			• more than 3 m c	or peat and/or highly org	anic ciay,
			• more than 8 m c	or nighly plastic soil (with	<u>1 PI > 75), or</u>
			 more than 30 m 	oi son to meaium-stiff o	<u>nay</u>
	Natart				
	Notes to Table 4.1.8.4B:				
	(1) See N	NOTE A-4.1.8.4.(2	<u>() and (3).</u>	to Cito Classes A and I	
	(2) Site d		and profile contained	to Site Classes A and E	s, are not to be used in
	<u>cases</u>	s where the grou	tooting or most form by	iene The energy ister ma	Aterials Detween rock
	and th	<u>ie underside of i</u>	iooting or mat toundat	ions. The appropriate si	te designation for such
	cases	<u>5 IS Å760.</u>			

PART 4 – CODE UPDATE INFORMATION				
NBC(AE) 2019	NBC(AE) 2023			
	(3) Site-specific geotechnical evaluation is required.			
	4) Site-specific geotechnical evaluation is required to determine the values of $PGA(X_r)$			
	PGV(X _F) and S _a (T,X _F) for site designation X _F .			
	5) Where structures on liquefiable soils have a fundamental lateral period, Ta, of 0.5 s or			
	the site designation X and the corresponding values of $S_a(T,X)$ and PGA(X) are permitted to determined in accordance with Septence (1) by accurate that the solid are permitted to the second secon			
	determined in accordance with Sentence (1) by assuming that the soils are not liquefiable.			
	6) The design spectral acceleration, S(T), shall be determined in accordance with Table 4.1.8.4C, using log-log or linear interpolation for intermediate values of T. (See Note A-			
	<u>4.1.8.4.(6).)</u>			
	Table 4.1.8.4C			
	Design Spectral Acceleration			
	Forming Part of Sentence 4.1.8.4.(6)			
	Design Constrait Appalaration (CT)			
	$\frac{Period, 1, in s}{S_{2}(0, 2, X) \text{ or } S_{2}(0, 5, X)}$ whichever is greater			
	<u>0.5</u> $S_{a}(0.5,X)$			
	<u>1.0</u> <u>Sa(1.0,X)</u>			
	<u>2.0</u> <u>Sa(2.0,X)</u>			
	$\frac{5.0}{10.0}$ $S_a(5.0,X)$			
	7) Where required for the application of a standard referenced in this Subsection, the acceleration-based site coefficient, F_a , for site designation X shall be taken as $S(0.2)/S_a(0.2, X_{450})$ and the velocity-based site coefficient, F_v , for site designation X shall be taken as $S(1.0)/S_a(1.0, X_{450})$.			
4.1.8.5. Importance Factor	4.1.8.5. Importance Factor and Seismic Category			
	4.1.0.5. Importance Factor and Seismic Category			
1) The earthquake importance factor, I_E , shall be determined according to Table 4.1.8.5.	1) The earthquake importance factor, I _E , shall be determined according to Table 4.1.8.5 <u>A</u>			
Table 4.1.8.5. Importance Factor for Earthquake Loads and Effects. Is	Table 4.1.8.5A Importance Factor for Earthquake Loads and Effects. Is			
Importance Factor for Earthquake Loads and Effects, I _E	Importance Factor for Earthquake Loads and Effects, IE			
Forming Part of Sentence 4.1.8.5.(1)	Forming Part of Sentence 4.1.8.5.(1)			
Notes to Table 4.1.8.5.:	Notes to Table 4.1.8.5A:			
(1) See Article 4.1.8.13.	(1) See Article 4.1.8.13.			
(2) See Note A-Table 4.1.8.5.	(2) See Note A-Table 4.1.8.5. <u>-A.</u>			
	2) Ruildings shall be assigned a Sajamia Catagory in assordance with Table 4.1.9.5. R			
	2) Buildings shall be assigned a Seismic Category in accordance with Table 4.1.8.5B.			
	Table 4.1.8.5B Seismic Categories for Buildings			
	Forming Part of Sentence 4.1.8.5.(2)			
	Seismic Category ⁽¹⁾ I_{r} $S(0,2)$ I_{r} $S(1,0)$			
	$\frac{ EO(1.2) }{ EO(1.2) } = \frac{ EO(1.2) }{ EO(1.2) } = \frac{ EO(1.2) }{ EO(1.2) }$			
	$\frac{1}{SC2} \qquad 0.2 \le I_E S(0.2) < 0.35 \qquad 0.1 \le I_E S(1.0) < 0.2$			
	<u>SC3</u> $0.35 \le I_ES(0.2) \le 0.75$ $0.2 \le I_ES(1.0) \le 0.3$			
	<u>SC4</u> $\underline{I_ES(0.2) > 0.75}$ $\underline{I_ES(1.0) > 0.3}$			

NBC(AE) 2019 NBC(AE) 2023 Additional and the Table 4.1.8.5.42 Motes to Table 4.1.8.5.42 Additional Collogate of a Database of LSD 22 and LSD 21 an			PART 4 – CODE UPDATE INFORMATION							
Notes to Table 4.18.5.8 4.18.5.8 4.18.5.8 4.18.5.8 4.18.5.8 4.18.5.8 4.18.5.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 4.18.6.8 5.10.0 4.18.6.8 5.10.0 4.18.6.8 5.10.0 4.18.6.8 5.10.0 5.10.0 5.10.0 4.18.6.8 5.10.0 5.10.0 5.10.0 4.18.10.0 5.10.0 5.10.0 <		NBC(AE) 2019			NBC(AE) 2023					
11. The Selectic Category 14 and 15 (0), respective of the Conference determined on the basis of 15 (0), respective of the Conference period of the Configuration 4.18.6. Structural Configuration 32. Except as required by Article 4.1.8.10, in cases where IaF_S(0.2) is equal to or greater than 0.35, structural configuration 4.18.6. Structural Configuration 32. Except as required by Article 4.1.8.10, in cases where IaF_S(0.2) is equal to or greater than 0.35, structural requiring the provisions reference of in Table 4.1.8.6. Structural requiring the provisions reference of in Table 4.1.8.6. Structural requiring the provisions reference of in Table 4.1.8.6. Table 4.1.8.6. Structural requiring the provisions reference of in Table 4.1.8.6. Structural Contagory is a structural Conta				Notes t	o Table 4.1.8.5B:					
determined on the basis of \$1002 and 1.5(1.0), inspective of the fundamental lateral period of the budding, T.s. 4.1.8.6. Structural Configuration 3) Except as required by Andie 4.1.8.10, in cases where 1.F.5.402.3 is equal to or greater than 0.35, structures designated as inregular must satisfy the provisions referenced in Table 4.1.8.8. Table 4.1.8.6. Structural Configuration 1) Type Table 4.1.8.6. Structural Tregularities(1/2) Forming Part of Sertions 4.1.8.0(1) and 1.8.0(1) and Anticle 4.1.8.1. Type Inregularity type and Definition 1) writical Staffness up of the SFRS in a strong late or yes the three budges of the SFRS in a strong or jue less than 70% of the stiffness of the three strongs above or below. 1) adjacent storey, or less fund S0% of the average stiffness of the three strongs above or below. (204) 1) adjacent storey, or less fund S0% of the average stiffness of the three strongs above or below. (204) 1) adjacent storey, or less fund S0% of the average stiffness of the three strongs above or below. (204) 1) adjacent storey, or less fund S0% of the average stiffness of the three strongs above or below. (204) 1) adjacent storey, or less fund S0% of the average storey adjacent storey, or less fund S0% of the average storey adjacent storey, or less fund storey. (204) 1) adjacent storey, or less fund S0% of the average storey adjacent storey, or less fund S0% of the average storey adjacent storey, or less fund storey. (204) 1) adjacent storey, or less fund S0% of the average storey adjacent storey, or less fund storey.				(1) The	Seismic Category of a building shall be taken as the more severe of the cate	egories				
A13.6. Structural Configuration A1.8.6. Structural Configuration Stru			determined on the basis of $I_ES(0.2)$ and $I_ES(1.0)$, irrespective of the fundamental lateral							
 A1.8.6. Structural Configuration (A1.8.6. Structural Configuration (A1.8.6. Structural regulative type and Delmiton <l< td=""><td></td><td></td><td colspan="7">period of the <i>building</i>, T_{a}.</td></l<>			period of the <i>building</i> , T_{a} .							
41.8.6. Structural Configuration 41.8.6. Structural Configuration 3) Except as required by Aritic 41.8.10, in cases where k F-Sq0.2) is equal to or greater than 0.35, structural conjunct as imposition molecular the provision referenced in Table 41.8.6. 3) Except as required by Aritic 41.8.10, in cases where k F-Sq0.2) = equal to or greater than 0.35, this during a during during a during a during during during a during durin			<u></u>	period of the Admining Lat						
 3) Except as required by Article 4.1.8.10, in cases where LF_56(2) is equal to or greater than 0.35, structures designated as irregular must satisfy the provisions referenced in Table 4.1.8. Case and Canady in Science 3.1.8.11 Case and Case and Canady in Science 3.1.8.11 Case and Case 	4.1.8.6.	Structural Configuration		4.1.8.6.	Structural Configuration					
3/ Exclusions referenced in Table 4.18.10; Table 4.18.10; Table 4.18.10; 2.5.5, structural tregularity must satisfy the provisions referenced in Table 4.18.10; Table 4.18.10; Table 4.18.10; 1 Table 4.18.10; Table 4.18.10; Table 4.18.10; Table 4.18.10; 1 Table 4.18.10; Table 4.18.10; Table 4.18.10; Table 4.18.10; 1 Table 4.18.10; Table 4.18.10; Table 4.18.10; Table 4.18.10; 1 Type Table 4.18.10; Type Ta	2) Even	t as required by Article 4.1.9.10, in cases where $I = F(0,2)$ is equal to	or greater then	2) Exco	nt as required by Article 4.1.9.10, in cases where LEES (0.2) is equal to an	reator than				
Considered useglialed as include an include in the state y the providence reducted in Table 4.1.8.5. Table 4.1.8.6. Trade 4.1.8.6.		t as required by Article 4.1.0.10., in cases where $I_{EFaSa}(0.2)$ is equal to (pi as required by Article 4.1.0.10., $\frac{111 \text{ cases}}{12 \text{ cases}}$ where $\frac{1}{4} = \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2$	netiofy the				
Table 4.1.8.6. Structural tregularities (1/2) Forming Part of Sentence 4.1.8.6.(1) Table 4.1.8.6. Structural tregularities (1/2) Forming Part of Sentence 4.1.8.6.(1) Table 4.1.8.6. Structural tregularities (1/2) Forming Part of Sentence 4.1.8.6.(1) Table 4.1.8.6. Structural tregularity full be considered to exist when the tateral stiffness of the SFRS in a story is less than 70% of the stiffness of the three storys above or below. Notes 1 stiffness of the three storys above or below. 000 1 stiffness of the three storys above or below. 000 1 stiffness of the three storys above or below. 000 1 stiffness of the three storys above or below. 000 1 stiffness of the three storys above or below. 000 1 story at above or below. 000 1 story at above or below. 000 1 story at above or below. 000 2 000 3 considered to axist when the rest or calculated in accordance with sentence 4.18.10(5), exceeds to 1 for an SFRS with self-cantening characteristics and 0.03 for other systems. 0000 10 Starteristical at affinication three story at a staft sentence 4.18.10(10), and 4.18.12(4). 00000 10 Stare	0.55, 50	actures designated as integrial musi satisfy the provisions referenced in	Table 4.1.0.0.	provisio	e <u>Seismic Calegory is SCS of SC4,</u> structures designated as inegular must s	ausly the				
Table 4.1.8.6. Structural regularity Vertical Stiffness Inegularity Vertical Stiffness Inegularity Vertical Stiffness Inegularity Notes Vertical Stiffness Inegularity Notes Table 4.1.8.6. Table 4.1.8.6. <td></td> <td></td> <td></td> <td>provisio</td> <td></td> <td></td>				provisio						
Structural Tregularity (1/2) Structural Tregularity (1/2) Forming Part of Sentences 4.18.6.(1) Structural Tregularity Type and Definition Notes Type Irregularity Type and Definition Notes Type Irregularity Type and Definition Notes Structural Tregularity Type and Definition Notes Structural Tregula		Table 4 1 8 6			Table 4 1 8 6					
Forming Part of Sentence 4.1.8.6.(1) Forming Part of Sentence 4.1.8.6.(1) Type integularity Type and Definition Vertical Stiffness irregularity Vertical Stiffness regularity Vertical Stiffness irregularity Vertical Stiffness irregularity Notes 1 stiffness of the SFRS in a storey is less than 70% of the stiffness of any dace with the patient storey, or less than 80% of the average stiffness of the storey above or below. provide the storey above or below. <td< td=""><td></td><td>Structural Irregularities(1)(2)</td><td></td><td></td><td>Structural Irregularities(1)(2)</td><td></td></td<>		Structural Irregularities(1)(2)			Structural Irregularities(1)(2)					
Type Irregularity Type and Definition Notes Type Irregularity Type and Definition Notes Iterational stiffness irregularity Iterational stiffness irregularity Notes 1 stiffness of any adjacent storey, or less than 80% of the average 0%0 1 stiffness of any adjacent storey, or less than 80% of the average 0%0 1 interact and the storey above or below. 0%0 1 interact and the storey above or below. 0%0 1 interact and the storey above or below. 0%0 2 interact and the storey above or below. 0%0 3 interact and the storey above or below. 0%0 3 interact and the storey above or below. 0%0 4 interact and the storey above or below. 0%0 4 interact and the storey above or below. 0%0 5 interact and the storey above or below. 0%0 6 interact and the storey above or below. 0%0 6 interact and the storey above or below. 0%0 6 interact and the storey above or below. 0%0 9 Gravity-induced Lateral Demand Irregularity		Forming Part of Sentence 4.1.8.6.(1)		Form	ning Part of Septence Septences 4.1.8.6.(1) and (3). Clause 4.1.8.7.(1)(c) and	d Article				
Type Irregularity Type and Definition Notes Type Irregularity Type and Definition Notes I attrast stiffness tregularity Vertical Stiffness tregularity Vertical Stiffness tregularity Notes 1 attrast stiffness of the SFRS in a storey is less than 80% of the avarage 0xin Iftee Construction 100% of the store and masony shear walls, vertical stiffness of the sFRS in a storey, is less than 80% of the avarage tiffness effection in adjacent store, or less than 80% of the avarage stiffness effection in adjacent store, or less than 80% of the avarage stiffness effection in adjacent to exist when the interstorey deflection inder lateral admand irregularity on the SFRS shall be considered to exist when the first orey deflection inder lateral admand irregularity on the SFRS shall be gonosidered to exist when the first orey advector to exist when the first orey advector on the systems. Iftee Construction 100% of that of an adjacent above, iftee of the store systems. 0 construction of the systems. Iftee Construction of the systems. Iftee Construction of the systems. 0 construction of the systems. Iftee Construction of the systems. Iftee Construction of the systems. 0 construction of the systems. Iftee Construction of the systems. Iftee Construction of the systems. 0 construction of the systems. Iftee Construction of the systems. Iftee Construction of the systems. 0 construction of the syste				<u>4.1.8.10.</u>						
Type Irregularity Irregularity Notes Image: Statistic strengularity Vertical stiffness irregularity Notes Notes 1 stiffness of regularity Vertical stiffness irregularity Notes 1 stiffness of any adjacent storey, or less than 80% of the average Image: Statistified in the estiffness of any intersection intersectintersectinteresection intersectinteresection intersection intere										
Vertical Stiffness irregularity Vertical Stiffness irregularity Vertical Stiffness irregularity Vertical Stiffness of the SFRS in a scorey is less than 20% of the average stiffness of the SFRS in a scorey is less than 20% of the average stiffness are storey or less than 20% of the average stiffness stiffness are storey or less than 20% of the average stiffness stiffness are storey or less than 20% of the average stiffness stiffness are storey or less than 20% of the average stiffness stiffness are storey or below. (000) In adjacent storey or less than 20% of the average stiffness irregularity in the stiffness are storey storey storey is a storey storey storey or below. (000) In adjacent storey or less than 20% of the average stiffness irregularity induced lateral demand irregularity on the SFRS in all be considered to exist where the interstorey deficition under lateral admendir lengularity on the SFRS shall be considered to exist where the ratio, q. calculated in accordance with some storey of less. Scoreeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. (000) Store to Table 4.1.8.15. (0) See Anticle 4.1.8.15. (0) See Anticle 4.1.8.11.(10), (11) and 4.1.8.12.(4). (0) See Anticle 4.1.8.1. (1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Forcedure described in Anticle 4.1.8.1.7.(10), except that the Equivalent State Force Procedure described in Anticle 4.	Type	Irregularity Type and Definition	Notes	Type	Irregularity Type and Definition	Notes				
Vertical stiffness inregularity shall be considered to exist when the integration of the integration shall be considered to exist when the integration of the integration shall be considered to exist when the integration of the integration shall be considered to exist when the integration of the integration shall be considered to exist when the integration of the integration shall be considered to exist when the integration of the integration shall be considered to exist when the integration of the in		Vertical Stiffness Irregularity			Vertical Stiffness Irregularity					
Iateral stiffness of the SFRS in a storey is less than 70% of the stiffness of any adjoint storey, or tess than 80% of the average stiffness of the SFRS shall be stiffness of the three storeys above or below. Image: Storey, or less than 80% of the average stiffness of the SFRS shall be storeys above or below, or below, or below, or less than 70% of the average stiffness of all other types of SFRS, write shall stiffness of the SFRS that advert the interstorey deflection under lateral earthquarks to cost divided by the interstorey deflection and the storey is areater than 130% of that of an adjoint three storeys above or below. Image: Storey, or less than 80% of the average stiffness of the storey, or less than 70% of adjoint the storey store or below. Image: Storey, or less than 80% of the average stiffness of the SFRS the interstorey deflection and the lateral authnaks to test where the interstorey deflection and storey, or less than 80% of the average stiffness of the storeys balow or below. Image: Storey balow, or less than 80% of the average stiffness of the storeys balow or below. Image: Storey balow, or less than 80% of the average stiffness of the storey balow, or less than 80% of the average stiffness or any storey is areater than 130% of that of an adjoint the storey balow, or the storeys balow, or the storey balow, or the storeys balow, or the storeys balow, or the storeys balow or the storey that is inclined normal frequilation the Stress shall be considered to exist where the ratio, or a Stress with self-centering characteristics and 0.03 for other systems. Image: Storey balow grade need not be considered in the determination of vertical stiffness in storey balow grade need not be considered in the determination of vertical stiffness in storey balow grade need not be considered in the determination of v		Vertical stiffness irregularity shall be considered to exist when the			Vertical For concrete and masonry shear walls, vertical stiffness					
1 stiffness of any adjacent storey, or less than 80% of the average (14) 1 stiffness of any adjacent storey, or less than 80% of the average stiffness of any adjacent storey, or less than 80% of the average stiffness of any in the storey below. For all other types of SFRS, verical stiffness in storey or less than 80% of the average stiffness of any adjacent storey below. For all other types of SFRS, verical stiffness in storey or less than 80% of the average stiffness of any adjacent storey below. For all other types of SFRS, verical stiffness in any storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is less than 70% of the stiffness of any is a storey is a storey is a storey is less than 70% of the stiffness in storey of less than 70% of the stiffness in storey of less and 000 is an adjacent storey. If less than 70% of the stiffness is a storey is a		lateral stiffness of the SFRS in a storey is less than 70% of the			irregularity shall be considered to exist when where the lateral stiffness of					
1 stiffness of the three storeys above or below. (344) 1 adjacent storey, or less than 80% of the average stiffness e.f., in the three storey defsFLS, yor less than 80% of the average stiffness e.f., in the three storey defsELS, yor all offer types of SFLS, yor less than 80% of the average stiffness e.f., in the interstorey defsELS, yor all offer types of SFLS, yor less than 80% of the average stiffness e.f., in the interstorey deficition under italicat antiquakty forces divided to exist where the interstorey deficition under italicat antiquakty forces divided to exist where the interstorey deficition under italicat antiquakty forces divided to exist where the interstorey deficition under italicat antiquakty forces divided to exist where the interstorey deficition under italicat antiquakty forces divided to exist where the interstorey deficition under italicat antiquakty forces divided to exist where the interstorey deficition under italicat antiquakty forces divided to exist where the interstorey deficition under italication and present the interstorey deficition under italicat antiquakty for the SFLS shall be considered to exist where the ratio, or calculated in accordance with Sentence 4.1.8.10.(5), exceeds 0.1 for an SFLS with self-centering characteristics and 0.03 for other systems. (9 10 Speed Column Irregularity Sentence 4.1.8.10.(5), exceeds 0.1 for an SFLS with self-centering characteristics and 0.03 for other systems. (9 11 Speed Column Irregularity shall be considered to exist where a vertical member that its inclined more than 2" from the vertical supports a portion of the weight of the building in axial compression. (9 10 Speed Column Irregularity and 4.1.8.12.(4). (9 <td></td> <td>stiffness of any adjacent storey, or less than 80% of the average</td> <td></td> <td></td> <td>the SFRS in a any storey is less than 70% of the stiffness of any in an</td> <td></td>		stiffness of any adjacent storey, or less than 80% of the average			the SFRS in a any storey is less than 70% of the stiffness of any in an					
storey: above or below. For all other types of SFRS, we tail storey to ensidered to exist where the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral earthquake forces divided by the interstory deflection under lateral demnad irregularity on the SFRS shall be considered to exist where the ratio, calculated in accordance with given the ratio, calculated in accordance with given the interstory deflection earth and accordance with exist structures in storeys below grade need not be considered in the determination of weight of the building in axial compression. Notes to Table 4.1.8.6. interstory deflection in accordance with the Dynamic for design earthquake actions shall be carried out in accordance with the Dynamic for design earthquake actions shall be carried out in accordance with the Dynamic for design earthquake actions shall be carried out in accordance with the Dynamic for design earthquake actions shall be carried out in accordance with the Dynamic forcedure described in Article 4.1.8.17. (1), except that the feature force the forcedure described in Article 4.1.8.17. (1), except that the feature force the forcedure described in Article 4.1.8.17. (1), except that the feature force the forcedure described in Article 4.1.8.17. (1), except that the feature force the f	1	stiffness of the three storeys above or below.	(3)(4)	1	adjacent storey, or less than 80% of the average stiffness of in the three	(3)(4)				
Image: space of the space					storeys above or below. For all other types of SFRS, vertical stiffness					
Image: Considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q, calculated in accordance with gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where a vertical member rhat is inclined more than 21 from the vertical supports a portion of the weight of the <i>building</i> in axial compression. Notes to Table 4.1.8.15. (5) See Article 4.1.8.15. (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.1.1(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.15.					irregularity shall be considered to exist where the interstorey deflection					
Image: Construct on the set of the					under lateral earthquake forces divided by the interstorey height, hs, of					
Image: Notes to Table 4.1.8.6.: Image: Notes to Table 4.1.8.15. Notes to Table 4.1.8					any storey is greater than 130% of that of an adjacent storey.					
7 08/0190 8 08/0190 08/0190 9 Gravity-induced lateral demand irregularity Gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, o, calculated in accordance with Sentence 4.1.8.10.(5), exceeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. 08/0190 Notes to Table 4.1.8.5.: Sloped Column irregularity of the weight of the building in axial compression. 08/0190 (5) See Article 4.1.8.15. Sloped Column irregularity. 10 Sloped Column irregularity. 110 (6) See Article 4.1.8.15. Sloped Column irregularity. 10 Sloped Column irregularity. 12 (6) See Article 4.1.8.15. Sloped Column irregularity. 10 Sloped Column irregularity. 12 (6) See Article 4.1.8.15. Sloped Column irregularity. 10 Sloped Column irregularity. 12 (6) See Article 4.1.8.15. Sloped Column irregularity. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) (7) See Article 4.1.8.8. 41.8.7. Methods of Analysis 1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.1.1.(10), except that the Equivalent Static Force Procedure described in Article 4.1.8.1.1. may be used for structures that meet any of the following criteria: a) in cac										
8	7		(3)(4)(6)	7		(3)(4)(<mark>67</mark>)				
Gravity-Induced Lateral Demand Irregularity Gravity-induced Lateral Demand Irregularity Soped Column Irregularity Soped Column Irregularity Gravity-induced Internation Internation of the weight of the Duilding In axial compression.	8		(3)(7)	8		(3)(<mark>7<u>8</u>)</mark>				
g Gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q. calculated in accordance with Sentence 4.1.8.10.(5), exceeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. (3)(4)(7) g g Gravity-induced lateral demand irregularity on the SFRS shall be considered to exist where the ratio, q. calculated in accordance with Sentence 4.1.8.10.(52), exceeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. (3)(4)(7) Notes to Table 4.1.8.6.: 10 Sloped Column Irregularity shall be considered to exist where a vertical supports a portion of the weight of the building in axial compression. (4) Notes to Table 4.1.8.5. (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), and 4.1.8.12.(4). (7) See Article 4.1.8.15.		Gravity-Induced Lateral Demand Irregularity			Gravity-Induced Lateral Demand Irregularity					
9 considered to exist where the ratio, q, calculated in accordance with Sentence 4.1.8.10.(5), exceeded 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. 9 considered to exist where the ratio, q, calculated in accordance with characteristics and 0.03 for other systems. 10 Sloped Column Irregularity and the weight of the building in axial compression. 10 Notes to Table 4.1.8.6.:		Gravity-induced lateral demand irregularity on the SFRS shall be			Gravity-induced lateral demand irregularity on the SFRS shall be					
Sentence 4.1.8.10.(5), exceeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. Sentence 4.1.8.10.(57), exceeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. Signed Column Irregularity shall be considered to exist where a vertical member that is inclued more than 2 ^e from the vertical supports a portion of the weight of the <i>building</i> in axial compression. Image: Sentence 4.1.8.10.(67), exceeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems. Notes to Table 4.1.8.6.: Sioped Column Irregularity shall be considered to exist where a vertical member than 2 ^e from the vertical supports a portion of the weight of the <i>building</i> in axial compression. Image: Sentence 4.1.8.10.(10), in axial compression. Notes to Table 4.1.8.15. (6) See Article 4.1.8.15. (5) Increased stiffness in storays below grade need not be considered in the determination of vertical stiffness inregularity. (6) See Article 4.1.8.15. (67) See Article 4.1.8.15. (67) See Sentences 4.1.8.11.(10), and 4.1.8.12.(4). (78) See Article 4.1.8.8. (78) See Article 4.1.8.15. (78) See Article 4.1.8.15. (1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A.4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where IsFaSa(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1.2.3, 4, 5, 6 or 8 as defined in Tab	9	considered to exist where the ratio, α , calculated in accordance with	(3)(4)(7)	9	considered to exist where the ratio, $\alpha_{\overline{\tau}}$ calculated in accordance with	(3)(4)(<mark>7<u>8</u>)</mark>				
characteristics and 0.03 for other systems. characteristics and 0.03 for other systems. 10 Stoped Column Irregularity 10 Stoped Column Irregularity shall be considered to exist where a vertical member that is inclined more than 2° from the vertical supports a portion of the weight of the building in axial compression. Notes to Table 4.1.8.6.: Image: Column Irregularity Image: Column Irregularity Image: Column Irregularity (6) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.6.: Image: Column Irregularity (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.6.: (7) See Article 4.1.8.6. Image: Column Irregularity (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.6. (7) See Article 4.1.8.6. Image: Column Irregularity (7) See Article 4.1.8.6. Image: Column Irregularity (7) See Article 4.1.8.10. (7) See Article 4.1.8.10. (7) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.7. (1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.7.(1)), except that the Equivalent Static Force P		Sentence 4.1.8.10.(5), exceeds 0.1 for an SFRS with self-centering			Sentence 4.1.8.10.(57), exceeds 0.1 for an SFRS with self-centering					
10 Sloped Column Irregularity Sloped colum Irregularity Sloped column Irregularity		characteristics and 0.03 for other systems.			characteristics and 0.03 for other systems.					
10 Sloped column irregularity shall be considered to exist where a vertical operator is inclined more than 2° from the vertical supports a portion of the weight of the building in axial compression. (a) Notes to Table 4.1.8.6.: (b) (c) (c) Sloped column irregularity shall be considered to exist where a vertical supports a portion of the weight of the building in axial compression. (c) Notes to Table 4.1.8.6.: (c) See Article 4.1.8.15. (c) (c) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (c) (c) See Article 4.1.8.8. (c) 41.8.7. Methods of Analysis 41.8.7. (1), except that the Equivalent Static Force Procedure described in Article 4.1.8.17.(1), except that the Equivalent Static Force Procedure described in Article 4.1.8.17.(1), except that the Equivalent Static Force Procedure described in Article 4.1.8.17.(1), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where IEFaSa(0.2) is less than 0.35, b) c) structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6. (d) 1.8.6. that are less than 20 m in height and have a fundamental lateral particle 4.1.8.15. c) structures with a structural irregularity, of Type 4, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.17. <td></td> <td></td> <td></td> <td></td> <td>Sloped Column Irregularity</td> <td></td>					Sloped Column Irregularity					
Image: Second				10	Sloped column irregularity shall be considered to exist where a vertical	<u>(4)</u>				
Notes to Table 4.1.8.6.: (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.8. 41.8.7. Methods of Analysis 1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where IEFaSu(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.18 for that are less than 20 m in height and have a fundamental lateral period. To structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.18 for that are less than 20 m in beight and have a fundamental lateral period. To structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.18 for that are less than 20 m in beight and have a fundamental lateral period. To structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.18 for that series than 20 m in beight and have a fundamental lateral period. To structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.18 for that series than 20 m in beight and have a fundamental lateral period. To structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.18 for that series than 20 m in beight and have a fundamental lateral period. To structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.18 for that				<u></u>	member that is inclined more than 2° from the vertical supports a portion					
Notes to Table 4.1.8.6.: Notes to Table 4.1.8.6.: (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (78) See Article 4.1.8.15. (67) See Sentences 4.1.8.11.(10), and (11), and 4.1.8.12.(4). (78) See Article 4.1.8.8. (78) See Article 4.1.8.8. (78) See Article 4.1.8.8. 4.1.8.7. Methods of Analysis 4.1.8.7. Methods of Analysis 1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where IEFaSa(0.2) is less than 0.35, b) (b) (c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table of 118.6. a) in cases where IEFaSa(0.2) is less than 0.35, b) (c) structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table of 118.6. c) structures with a structural irregularity-of Type 4, -2, 3, 4, 5, 6 or 8 as defined in Table of 118.6.					of the weight of the building in axial compression.					
(5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.8.(5) Increased stiffness in storeys below grade need not be considered in the determination of vertical stiffness irregularity. (6) See Article 4.1.8.15. (6) See Article 4.1.8.8. 4.1.8.7. Methods of Analysis 1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where IEFaSa(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table (4.1.8.6. that are less than 20 m in beipht and have a fundamental lateral period T- b) c) structures with a release than 20 m in beipht and have a fundamental lateral period T- a structural irregularity, of Type 4, 2, 3, 4, 5, 6 or 8 as defined in Table (4.1.8.6. that are less than 20 m in beipht and have a fundamental lateral period T- a structures int are less than 20 m in beipht and have a fundamental lateral period T- a structures with a structural irregularity for Type 4, 2, 3, 4, 5, 6 or 8 as defined in Table (4.1.8.6. that are less than 20 m in beipht and have a fundamental lateral period T- a structures with a structural irregularity and have a fundamental lateral period T- a structures with a structural irregularity and have a fundamental lateral period T- a structures with a structural irregularity and have a fundamental lateral period T- a structures with a structural irregularity and have a fundamental lateral period T- b) c) structures with a structural irregularity for Type 4, 5, 6 or 8 as defined in Table a fundamental lateral period T-	Notes to	o Table 4.1.8.6.:		Notes t	o Table 4.1.8.6.:					
 (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.8. (6) See Sentences 4.1.8.11.(10), and (11), and 4.1.8.12.(4). (7) See Article 4.1.8.8. (7) See Article 4.1.8.8. (7) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6. (5) Increased stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below. <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of vertical stiffness in <i>storeys</i> below <i>grade</i> need not be considered in the determination of the procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35. b) 										
 (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.8. (7) See Article 4.1.8.8. (7) See Article 4.1.8.8. (7) See Article 4.1.8.8. (7) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 or 8 as defined in Table 4.1.8.7 or 9 min beingt and have a fundamental lateral period. To structures with a structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 or 8 as d				<u>(5)</u> Incr	eased stiffness in storeys below grade need not be considered in the determ	nination of				
 (5) See Article 4.1.8.15. (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.8. (67) See Article 4.1.8.11.(10), and (11), and 4.1.8.12.(4). (78) See Article 4.1.8.8. (78) See Article 4.1.8.8. (78) See Article 4.1.8.8. (78) See Article 4.1.8.8. (78) See Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6. (56) See Article 4.1.8.15. (67) See Sentences 4.1.8.11.(10), and (11), and 4.1.8.12.(4). (78) See Article 4.1.8.12. (78) See Article 4.1.8.12. (79) See Article 4.1.8.12. (78) See Article 4.1.8.15. (79) See Article 4.1.8.12. (78) See Article 4.1.8.14. (79) See Article 4.1.8.15. (78) See Article 4.1.8.15. (78) See Article 4.1.8.12. (79) See Article 4.1.8.12. (78) See Article 4.1.8.12. (79) See Article 4.1.8.12. (71) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (71) Analysis Procedure described in Article 4.1.8.12. (72) See Article 4.1.8.12. (73) See Article 4.1.8.12. (74) Analysis Procedure described in Article 4.1.8.12. (75) See Article 4.1.8.12. (76) See Article 4.1.8.12. (76) See Article 4.1.8.12. (77) See Article 4.1.8.12. (78) See Article 4.1.8.12. (79) See Article 4.1.8.1				vert	ical stiffness irregularity.					
 (6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4). (7) See Article 4.1.8.8. (7) See Article 4.1.8.8. (7) See Article 4.1.8.8. (7) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 or 8	(5) See			(<mark>56</mark>)See	Article 4.1.8.15.					
 (7) See Article 4.1.8.8. (48) See Article 4.1.8.8. (41) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in beight and have a fundamental lateral period. Table 	(6) See	Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4).		(<mark>6/</mark>)See	a Sentences 4.1.8.11.(10), and (11), and 4.1.8.12.(4).					
 4.1.8.7. Methods of Analysis 4.1.8.7. Methods of Ana	(7) See	Article 4.1.8.8.	(<mark>48</mark>)See	Article 4.1.8.8.						
1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where $I_EF_aS_a(0.2)$ is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in beint and have a fundamental lateral period. To	4.1.8.7.	Methods of Analysis		4.1.8.7.	Methods of Analysis					
 1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in height and have a fundamental lateral period. To 										
Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where $I_EF_aS_a(0.2)$ is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in height and have a fundamental lateral period. Table	1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic				rsis for design earthquake actions shall be carried out in accordance with the	e Dynamic				
Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria: a) in cases where $I_EF_aS_a(0.2)$ is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in height and have a fundamental lateral period. Table	Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the				S Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that	at the				
 that meet any of the following criteria: a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in beight and have a fundamental lateral period. Table 	Equivale	nt Static Force Procedure described in Article 4.1.8.11. may be used for	Equival	ent Static Force Procedure described in Article 4.1.8.11. may be used for stru	uctures					
 a) in cases where I_EF_aS_a(0.2) is less than 0.35, b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in beight and have a fundamental lateral period. Table 	that mee	t any of the following criteria:	that meet any of the following criteria:							
 b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6 that are less than 20 m in height and have a fundamental lateral period. Table 4.1.8.6 that are less than 20 m in height and have a fundamental lateral period. Table 	a) i	n cases where $I_EF_aS_a(0.2)$ is less than 0.35,		a)	In cases where $I_{E} F_{a} S_{a}(0.2)$ is less than 0.35 where the Seismic Category is S	<u>SC1 or</u>				
 b) c) structures with structural irregularity, of Type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4 1 8 6 that are less than 20 m in beight and have a fundamental lateral period. Table 4 1 8 6 that are less than 20 m in beight and have a fundamental lateral period. Table 					<u>SUZ</u> ,					
C_{1} structures with structural inegularity, or type 1, 2, 3, 4, 5, 6 or 8 as defined in Table C_{1} structures with <u>a</u> structures in frequiarity, or type 1, 2, 3, 4, 5, 6 or 8 as defined in Table 4.1.8.6, that are less than 20 m in height and have a fundamental lateral period. Table 4.1.8.6, that are less than 20 m in height and have a fundamental lateral period. Table	D)	 http://www.with.otructural.irregularity.of.Tura.4.0.0.4.5.0.er.0.er.d.f.	d in Tabla	b)		d in Tabla				
		structures with structural integulatity, of Type 1, 2 , 3 , 4 , 5 , 6 Of 8 as define 1.1.8.6 that are less than 20 m in beight and have a fundamental lateral		C)	4 1.86 that are less than 20 m in height and have a fundamental lateral pa					

								PART 4 – CODI	E UPDATE INFO	RMA	ION									
NE	BC(AE)	2019						NBC(AE) 2023									Co	mments		
less than 0.5 s in each of two ortho	gonal	directio	ons as (define	d in Arti	cle 4.1.8	8.8.	less than 0.5 s in each of two orthogonal directions as defined in Article 4.1.8.8.												
4.1.8.8. Direction of Loading						4.1.8.8. Direction of Loading														
 Earthquake forces shall be assumed to act in any horizontal direction, except that the following shall be considered to provide adequate design force levels in the structure: a) b) where the components of the SFRS are not oriented along a set of orthogonal axes and I_EF_aS_a(0.2) is less than 0.35, independent analyses about any two orthogonal axes is permitted, or c) where the components of the SFRS are not oriented along a set of orthogonal axes and I_EF_aS_a(0.2) is equal to or greater than 0.35, analysis of the structure independently in any two orthogonal directions for 100% of the prescribed earthquake loads applied in one direction plus 30% of the prescribed earthquake loads in the perpendicular direction, with the combination requiring the greater element strength being used in the design. 							 1) Earthquake forces shall be assumed to act in any horizontal direction, except that the following shall be considered to provide adequate design force levels in the structure: a) b) where the components of the SFRS are not oriented along a set of orthogonal axes and lEFaSa(0.2) is less than 0.35 the Seismic Category is SC1 or SC2, independent analyses about any two orthogonal axes is permitted, or c) where the components of the SFRS are not oriented along a set of orthogonal axes and lEFaSa(0.2) is equal to or greater than 0.35 the Seismic Category is SC3 or SC4, analysis of the structure independently in any two orthogonal directions for 100% of the prescribed specified earthquake loads applied in one direction plus 30% of the prescribed specified earthquake loads in the perpendicular direction, with the combination requiring the greater element strength being used in the design. 							ne						
4.1.8.9. SFRS Force Reduction Factors, Restrictions	Syster	n Ove	rstreng	gth Fa	ctors, a	nd Ger	neral	4.1.8.9. SFRS Force Red General Restrictions	luction Modifica	<u>tion</u> F	acto	rs , Sys	tem O	verstre	ngth F	actors, and				
1) Except as provided in Sentence 4.1.8.20.(7), the values of R_d and R_o and the corresponding system restrictions shall conform to Table 4.1.8.9. and the requirements of this Subsection.						1) Except as provided in and the corresponding system of this Subsection.	Sentence <u>Articles</u> stem restrictions	4.1.8 shall c	20. (7 confo	<mark>∕),</mark> <u>and ∉</u> rm to Ta	<u>4.1.8.2</u> able 4.	<u>2.,</u> the 1.8.9. a	values ind the	of R _d and R₀ requirement	b ts					
5) If it can be demonstrated through testing, research and analysis that the seismic performance of a structural system is at least equivalent to one of the types of SFRS mentioned in Table 4.1.8.9., then such a structural system will qualify for values of R_d and R_o corresponding to the equivalent type in that Table. (See Note A-4.1.8.9.(5).)					5) If it can be demonstrated through testing, research and analysis that the seismic performance of a structural system is at least equivalent to one of the types of SFRS mentioned defined in Table 4.1.8.9., then such a structural system will qualify for values of R_d and R_o corresponding to the equivalent type in that Table. (See Note A-4.1.8.9.(5).)															
Table 4.1.8.9. SFRS Ductility-Related Force Modification Factors, R₀, Overstrength-Related Force Modification Factors, R₀, and General Restrictions ⁽¹⁾ Forming Part of Sentences 4.1.8.9.(1) and (5)					Table 4.1.8.9. SFRS Ductility-Related Force Modification Factors, R _o , and General Restrictions ⁽¹⁾ Modification Factors, R _o , and General Restrictions ⁽¹⁾ Forming Part of Sentences 4.1.8.9.(1) and (5), 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8))									
Type of SFRS	Rd	R₀	C < 0.2	F ases I _E F _a S _a ≥ 0.2 to < 0.35	Restricti Nhere (0.2) \geq 0.35 to \leq 0.75	ons ⁽²⁾ _E).75	Cases Where $F_vS_a(1.0)$ > 0.3	Type of SFI	RS	Rd	R₀	Case <u>S</u> < 0.2 <u>SC1</u>	s Whe eismic ≥ 0.2 to < 0.35 SC2	Restric re $I_{E}F_{a}$ Catego 2 0.35 $to \leq$ 0.75 SC3	tions ⁽²⁾	Cases Where I∉F _v S _a (1.0) ≻ 0.3				
Steel Structures Designed a	nd Deta	ailed A	ccordin	g to C	SA S16	(3)(4)		Steel Structu	ures Designed ar	nd Det	ailed	Accord	ing to	CSA S1	6(3)(4)					
								 Moderately ductile truss resisting frames	moment-	 <u>3.5</u>	<u>1.6</u>	 <u>NL</u>	 <u>NL</u>	 <u>50</u>	 <u>30</u>	*** entire column deleted ***				
Limited ductility plate walls	2.0	1.5	NL	NL	60	60	60	Moderately ductile plate Limited ductility plate wa	walls	<u>3.5</u> 2.0	<u>1.3</u> 1.5 <u>1.3</u>	NL NL	 <u>NL</u> NL	<u>40</u> 60	<u>40</u> 60					
Concrete Structures Designed	 <u>d an</u> d D	Detailed	d <u>Ac</u> cor	ding to	• <u>CS</u> A /	23.3		Concrete Structures	s Designed and I	Detaile	<u>d A</u> c	cording	to CS/	A <u>A2</u> 3.3						
 Conventional construction Moment-resisting frames		 1.3	 NL	 NL	20	 15	 10 ⁽⁵⁾	 Conventional construction Moment-resisting fram	on nes	1.5	1.3	 NL	 NL	20	 15					
															10 ⁽⁵⁾⁽⁶⁾					

PART 4 – CODE UPDATE INFORMATION															
N	BC(AE)) 2019					NBC(AE) 2023								
Shear walls	1.5	1.3	NL	NL	40	30	30	Shear walls 1.5 1.3 NL NL 40 30							
Two-way slabs without beams	1.3	1.3	20	15	NP	NP	NP	Two-way slabs without beams 1.3 1.3 20 15 NP							
Tilt-up construction								Tilt-up construction							
Moderately ductile walls and frames	2.0	1.3	30	25	25	25	25	Moderately ductile walls and frames 2.0 1.3 30 25 25 25							
Limited ductility walls and frames	1.5	1.3	30	25	20	20	20(6)	Limited ductility walls and frames 1.5 1.3 30 25 20 20 ⁽⁷⁾							
Conventional walls and frames	1.3	1.3	25	20	NP	NP	NP	Conventional walls and frames 1.3 1.3 25 20 NP NP							
Other concrete SFRS(s) not listed	1.0	1.0	15	15	NP	NP	NP	Other concrete SFRS(s) not listed1.01.01515NP							
above				allia a tu		000		above							
I Imper Structures Designed	and D		ACCOR	aing to	D CSA	086		Timber Structures Designed and Detailed According to CSA O86							
	<u> </u>		•••												
	ļ							Moderately ductile cross-laminated timber shear walls: platform-type construction2.01.5303020							
								Limited ductility cross-laminated timber shear walls: platform-type construction1.01.3303020							
Other wood- or gypsum-based SFRS(s) not listed above	1.0	1.0	15	15	NP	NP	NP	Other wood- or gypsum-based SFRS(s) not listed above1.01.01515NPNP							
 Cold Formod Stool Structures Do	<u> </u>	<u></u>													
	signed a	and De		Accord	aing to	I CSA	5130	Cold-Formed Steel Structures Designed and Detailed According to CSA S136							
Other cold-formed SFRS(s) not defined	1.0	1.0	15	15	NP	NP	NP	Other cold-formed SFRS(s) not defined 1.0 1.0 15 15 NP							
Notes to Table 4.1.8.9.: (5) Frames limited to a maximum of 2 sto. (6) Frames limited to a maximum of 3 sto.	reys. reys.							Notes to Table 4.1.8.9.: (5) Frames <u>are limited to a maximum of 2 storeys.</u> (6) The maximum height limit is permitted to be increased to 15 m where $I_ES(1.0) \le 0.3$. (67) Frames <u>are limited to a maximum of 3 storeys</u> .							
4.1.8.10. Additional System Restrictions	s							4.1.8.10. Additional System Restrictions							
1) Except as required by Clause (2)(b), str Capacity - Weak Storey, as described in T less than 0.2 and the forces used for desig	uctures able 4. on of the	s with a 1.8.6., e SFRS	a Type (are not S are m	6 irreg t perm nultiplie	ularity itted u ed by	, Disco Inless R₀R₀.	ontinuity in I _E F _a S _a (0.2) is	1) Except as required by Clause (2)(b), structures with a Type 6 irregularity, Discontinuity in Capacity - Weak Storey, as described in Table 4.1.8.6., are not permitted unless $I_E F_a S_a(0.2)$ is less than 0.2 the Seismic Category is SC1 and the forces used for design of the SFRS are multiplied by $R_d R_o$.							
 2) Post-disaster buildings shall a) not have any irregularities conforming to Types 1, 3, 4, 5, 7 and 9 as described in Table 4.1.8.6., in cases where I_EF_aS_a(0.2) is equal to or greater than 0.35, b) not have a Type 6 irregularity as described in Table 4.1.8.6., c) have an SFRS with an R_d of 2.0 or greater, and d) have no <i>storey</i> with a lateral stiffness that is less than that of the <i>storey</i> above it 								 2) Post-disaster buildings shall a) not have any irregularities conforming to Types_Type_1, 3, 4, 5, 7 and 9, or 10 irregularities as described in Table 4.1.8.6., in cases where I_EF_aS_a(0.2) is equal to or greater than 0.35 The Seismic Category is SC3 or SC4, b) not have a Type 6 irregularity as described in Table 4.1.8.6., c) have an SFRS with an Rd of 2.0 or greater, and d) where they are constructed with concrete or masonry shear walls, have no storey with a lateral stiffness that is less than that of the storey above it, and e) where they are constructed with other types of SFRS, have no storey for which the interstorey deflection under lateral earthquake forces divided by the interstorey height, hs, is greater than that of the storey above it. 							
								 3) High Importance Category <i>buildings</i> shall a) not have Type 1, 3, 4, 5, 7, 9 or 10 irregularities as described in Table 4.1.8.6., where the Seismic Category is SC4, b) not have a Type 6 irregularity as described in Table 4.1.8.6., c) have an SFRS with an Rd of at least i) 2.0 where the Seismic Category is SC4, and ii) 1.5 otherwise, d) where they are constructed with concrete or masonry shear walls, have no storey with a lateral stiffness that is less than that of the storey above it and 							

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
	e) where they are constructed with other types of SFRS, have no storey for which the
	Interstorey deflection under lateral earthquake forces divided by the interstorey height,
	Tis, is greater than that of the storey above it.
3) For <i>buildings</i> having fundamental lateral periods, T_a , of 1.0 s or greater, and where $I_EF_vS_a(1.0)$ is greater than 0.25, shear walls that are other than wood-based and form part of the SERS shall be continuous from their top to the form detice and shall not have imaged	34) For buildings having Where the fundamental lateral periods, T_a , of 1.0 s or is greater, than or equal to 1.0 s and where $I_EF_vS_aI_ES(1.0)$ is greater than 0.25, shear walls that are other than wood-based and form part of the SFRS shall be continuous from their top to the <i>foundation</i> and shall not have $T_v = 4$ or $F_v = 4$ or $F_v = 4$ or $F_v = 4$ or $F_v = 4$.
of Type 4 or 5 as described in Table 4.1.8.6	shall not have <u>Type 4 of 5</u> inegularities of Type 4 of 5 as described in Table 4.1.6.6.
	45) For <i>buildings</i> in Seismic Category SC3 or SC4 that are constructed with more than 4
4) For <i>buildings</i> constructed with more than 4 <i>storeys</i> of continuous wood construction and where IEFaSa(0.2) is equal to or greater than 0.35, timber SFRS consisting of shear walls with wood-based panels or of braced or moment-resisting frames as defined in Table 4.1.8.9. within the continuous wood construction shall not have Type 4 or Type 5 irregularities as described in Table 4.1.8.6. (See Note A-4.1.8.10.(4).)	storeys of continuous wood construction and where IEFaSa(0.2) is equal to or greater than 0.35 , timber SFRSs consisting of shear walls with wood-based panels or of braced or moment-resisting frames as defined in Table 4.1.8.9. within the continuous wood construction shall not have Type 4 or Type-5 irregularities as described in Table 4.1.8.6. (See Note A-4.1.8.10.(45) and (6).)
	6) For buildings in Seismic Category SC3 or SC4 that are constructed with more than 4 storeys
	of continuous wood construction, timber SFRSs consisting of moderately ductile or limited ductility cross-laminated timber shear walls, platform-type construction, as defined in Table 4.1.8.9. within the continuous wood construction shall not have Type 4, 5, 6, 8, 9 or 10 irregularities as described in Table 4.1.8.6. (See Note A-4.1.8.10.(5) and (6).)
5) The ratio _{τ} α_{τ} for a Type 9 irregularity as described in Table 4.1.8.6. shall be determined independently for each orthogonal direction using the following equation:	57) The ratio, α_{τ} for a Type 9 irregularity as described in Table 4.1.8.6. shall be determined independently for each orthogonal direction using the following equation:
$\alpha = Q_g/Q_y$	$\alpha = Q_g/Q_y$
where	where
 Q_G = Q_y = the resistance of the yielding mechanism required to resist the minimum earthquake loads, which need not be taken as less than R₀ multiplied by the minimum lateral earthquake force as determined in Article 4.1.8.11. or 4.1.8.12., as appropriate. (See Note A-4.1.8.10.(5).) 	 Q_G = Q_y = the resistance of the yielding mechanism required to resist the minimum earthquake loads, which need not be taken as less than R₀ multiplied by the minimum specified lateral earthquake force as determined in Article 4.1.8.11. or 4.1.8.12., as appropriate. (See Note A-4.1.8.10.(57).)
6) For <i>buildings</i> with a Type 9 irregularity as described in Table 4.1.8.6. and where $I_EF_aS_a(0.2)$ is equal to or greater than 0.5, deflections determined in accordance with Article 4.1.8.13. shall be multiplied by 1.2.	68) For <i>buildings</i> with a Type 9 irregularity as described in Table 4.1.8.6. and where $H_EF_aS_aI_ES(0.2)$ is equal to or greater than 0.5, deflections determined in accordance with Article 4.1.8.13. shall be multiplied by 1.2.
7) Structures where the value of α , as determined in accordance with Sentence (5), exceeds twice the limits specified in Table 4.1.8.6. for a Type 9 irregularity, and where $I_EF_aS_a(0.2)$ is equal to or greater than 0.5, are not permitted unless determined to be acceptable based on non-linear dynamic Analysis studies. (See Note A-4.1.8.10.(7).)	 79) Structures For <i>buildings</i> where the value of α, as determined in accordance with Sentence (57), exceeds twice the <u>appropriate</u> limits specified in Table 4.1.8.6. for a Type 9 irregularity, and where leFaSalES(0.2) is equal to or greater than 0.5, are not permitted unless determined to be acceptable based on a <u>n</u>Non-linear dDynamic Aanalysis studies, of the structure shall be carried out in accordance with Article 4.1.8.12, and the following criteria: a) the analysis shall account for the effects of the vertical response of the <i>building</i> mass, b) the analysis shall account for the effects of the vertical response of <i>building</i> components that undergo a vertical displacement when displaced laterally, c) the analysis shall use vertical ground motion time histories that are compatible with horizontal ground motion time histories scaled to the target response spectrum and that are applied concurrently with the horizontal ground motion time histories, d) the largest interstorey deflection at any level of the <i>building</i> as determined from the analysis shall not be greater than 60% of the appropriate limit stated in Sentence 4.1.8.13.(3), and e) the results of an analysis using the ground motion time histories in Clause (c) multiplied by 1.5 shall satisfy the non-linear acceptance criteria.
	10) The design of buildings in Seismic Category SC3 or SC4 with a Type 10 irregularity as described in Table 4.1.8.6. shall satisfy the following requirements:a) the structure shall be designed to resist the additional earthquake forces due to the

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
	 vertical accelerations of the mass supported by inclined vertical members (see Note A- 4.1.8.10.(10)(a)), and the effects of the horizontal and vertical movements of inclined vertical members, while undergoing earthquake-induced deformations, on the floor systems they support shall be considered in the design of the <i>building</i> and accounted for in the application of Sentence 4.1.8.3.(5).
4.1.8.11. Equivalent Static Force Procedure for Structures Satisfying the Conditions of Article 4.1.8.7.	4.1.8.11. Equivalent Static Force Procedure for Structures Satisfying the Conditions of Article 4.1.8.7.
2) Except as provided in Sentence (12), the minimum lateral earthquake force, V, shall be calculated using the following formula:	2) Except as provided in Sentence (12), the minimum specified lateral earthquake force, V, shall be calculated using the following formula:
$V = S(T_a)M_v I_E W/(R_d R_o)$	$V = S(T_a)M_vI_EW/(R_dR_o)$
except a) b) for moment-resisting frames, braced frames, and other systems, V shall not be less than	except a) b) for moment-resisting frames, braced frames, and other systems, V shall not be less than
S(2.0)MvIEW/(RdRo)	S(2.0)M _v I _E W/(R _d R _o) <u>, and</u>
c) for <i>buildings</i> located on a site other than Class F and having an SFRS with an R _d equal to or greater than 1.5, V need not be greater than the larger of	c) for <i>buildings</i> located on a site <u>designated as</u> other than <u>Class F_X</u> and having an SFRS with an R _d equal to or greater than 1.5, V need not be greater than the larger of
$\frac{\frac{2}{3}}{S(0.2)}I_{E}W/(R_{d}R_{o}) \text{ and } S(0.5) I_{E}W/(R_{d}R_{o})$	$\frac{\frac{2}{3}(2/3)}{S(0.2)I_{E}W/(R_{d}R_{o})}$ and S(0.5) I _E W/(R _d R _o)
 3) Except as provided in Sentence (4), the fundamental lateral period, T_a, in the direction under consideration in Sentence (2), shall be determined as: a) for moment-resisting frames that resist 100% of the required lateral forces and where the frame is not enclosed by or adjoined by more rigid elements that would tend to prevent the frame from resisting lateral forces, and where hn is in metres: i) 0.085 (hn)^{3/4} for steel moment frames, ii) 0.075 (hn)^{3/4} for concrete moment frames, or iii) 0.1 N for other moment frames, b) 0.025hn for braced frames where hn is in metres, c) 0.05 (hn)^{3/4} for shear wall and other structures where hn is in metres, or d) other established methods of mechanics using a structural model that complies with the requirements of Sentence 4.1.8.3.(8), except that i) for moment-resisting frames, T_a shall not be taken greater than 1.5 times that determined in Clause (a), ii) for shear wall structures, T_a shall not be taken greater than 2.0 times that determined in Clause (b), iii) for other structures, T_a shall not be taken greater than 1.5 times that determined in Clause (c), iv) for other structures, T_a shall not be taken greater than 2.0 times that determined in Clause (c), 	 3) Except as provided in Sentence (4), the fundamental lateral period, T_a, in the direction under consideration in Sentence (2), shall be determined as: a) for moment-resisting frames that resist 100% of the required-lateral earthquake forces and where the frame is not enclosed by or adjoined by more rigid elements that would tend to prevent the frame from resisting lateral forces, and where h_a is in metroe: i) 0.085-(h_n)^{3/4} for steel moment frames, ii) 0.075-(h_n)^{3/4} for concrete moment frames, ii) 0.075-(h_n)^{3/4} for concrete moment frames, b) 0.025h for braced frames where h_a is in metroe, c) 0.05-(h_n)^{3/4} for shear wall and other structures where h_a is in metroe, or d) other established methods of mechanics using a structural model that complies with the requirements of Sentence 4.1.8.3.(8), except that i) for moment-resisting frames, T_a shall not be taken as greater than 1.5 times that determined in Clause (a), ii) for shear wall structures, T_a shall not be taken as greater than 2.0 times that determined in Clause (b), iii) for other structures, T_a shall not be taken as greater than 1.6 times that determined in Clause (c), iv) for other structures, T_a shall not be taken as greater than 2.0 times that determined in Clause (c),
7) The total lateral seismic force, V, shall be distributed such thata portion, F_t , shall be assumed to be concentrated at the top of the <i>building</i> , where F_t is equal to 0.07 T_aV but need not exceed 0.25 V and may be considered as zero where the fundamental lateral period, T_a , does not exceed 0.7 s; the remainder, V - F_t , shall be distributed along the height of the <i>building</i> , including the top level, in accordance with the following formula:	 7) The total specified lateral seismic earthquake force, V, shall be distributed such that a portion, Ft, shall be assumed to be is concentrated at the top of the <i>building</i>, where Ft is equal to 0.07-TaV but need not exceed 0.25-V and may be considered as zero where the fundamental lateral period, Ta, does not exceed 0.7 s; and b) the remainder, V - Ft, shall be is distributed along the height of the <i>building</i>, including the top level, in accordance with the following formula:

NBC(AE) 2019										NBC(AE) 2023									
Table 4.1.8.11.											Table 4.1.8.11.								
Higher Mode Factor, Mv, and Base Overturning Moment Reduction Factor, J ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾									High	ner Mod	le Factor, l	Mv, and B	ase Overtu	rning Mo	oment Redu	ction Facto	or, J ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾		
			Formi	ng Part of	Sentence	e 4.1.8.11	.(6)						Forming	g Part of Ser	ntence 4.	1.8.11.(6)			
						r							1						
S(0.2)/	M _v for	M_v for	M_v for	M_v for T_a	J for Ta	J for Ta	J for $T_a =$	J for T _a ≥		S(0.2)/	M_v for	M_v for T_a	M_v for T_a	M_v for $T_a \ge$	J for Ta	J for $T_a =$	J for $T_a =$	J for Ta ≥	
S(5.0)	Ta≤	$T_{a} = 1.0$	$T_{a} = 2.0$	≥ 5.0	≤ 0.5	= 1.0	2.0	5.0		S(5.0)	Ta≤	= 1.0	= 2.0	5.0	≤ 0.5	1.0	2.0	5.0	
	0.5										0.5								
			Mor	ment-Resis	sting Fran	nes							Мо	ment-Resist	ting Fran	nes			
5	1	1	1	(5)	1	0.97	0.92	(5)		5	1	1	1	(5)	1	0.97 1	0.92 0.95	(5)	
20	1	1	1	(5)	1	0.93	0.85	(5)		20	1	1	1	(5)	1	0.93 0.97	0.85 0.88	(5)	
40	1	1	1	(5)	1	0.87	0.78	(5)		40	1	1	1	(5)	1	0.870.90	0.780.79	(5)	
65	1	1	1.03	(5)	1	0.80	0.70	(5)		<u>6570</u>	1	1	1.031	(5)	1 0.98	0.800.88	0.70	(5)	
				Coupled	Walls ⁽⁶⁾									Coupled V	Valls ⁽⁶⁾				
5	1	1	1	1(7)	1	0.97	0.92	0.80 ⁽⁸⁾		5	1	1	1	1 ⁽⁷⁾	1	0.971	0.920.95	0.80 ⁽⁸⁾	
20	1	1	1	1 08 ⁽⁷⁾	1	0.93	0.85	0.65 ⁽⁸⁾		20	1	1	1	1.081.09(7)	1	0.930.97	0.850.88	0.650 $66^{(8)}$	
40	1	1	1	1 30(7)	1	0.87	0.78	0.53(8)		40	1	1	1	1.301 33(7)	1	0.870.90	0.780.79	$0.53052^{(8)}$	
65	1	1	1 03	1 49(7)	1	0.80	0.70	0.46 ⁽⁸⁾		6570	1	1	1.031	1.00 <u>1.00</u> (7)	10 98	0.07 0.00	0.70	0.00 0.02	
		I	1.00	Braced F	rames	0.00	0.70	0.40		0010	1	1	1.001	Braced Fi	rames	0.00 <u>0.00</u>	0.70	0.40 <u>0.40</u>	
5	1	1	1	(5)	1	0.95	0.80	(5)		5	1	1	1	(5)	1	0.050.08	0.800.03	(5)	
20	1	1	1	(5)	1	0.35	0.03	(5)		20	1	1	1	(5)	1	0.850.01	0.780.80	(5)	
20	1	1	1	(5)	1	0.05	0.70	(5)		20	1	1	1	(5)	10.01	0.000.01	0.700.00	(5)	
40		1	1	(5)		0.79	0.70	(5)		40		1	1	(5)	+0.91	0.790.02	0.700.72	(5)	
65	1	1.04	1.07	(3)	1	0.71	0.66	(3)		<u>6570</u>	1	1.04<u>1</u>	1.07<u>1.19</u>	(5)	<u> 10.91</u>	<u>0.710.77</u>	0.66 <u>0.61</u>	(5)	
			Wall	<u>s, Wall-Fra</u>	ame Syst	ems		(0)					Wa	lls, Wall-Fra	me Syste	ems			
5	1	1	1	1.25(7)	1	0.97	0.85	0.55 ⁽⁸⁾		5	1	1	1	1.25 <u>1.30</u> (7)	1	0.97<u>1</u>	0.85	0.55<u>0.59</u>⁽⁸⁾	
20	1	1	1.18	2.30 ⁽⁷⁾	1	0.80	0.60	0.35 ⁽⁸⁾		20	1	1	1.18	2.30 2.50 ⁽⁷⁾	1	0.80	0.60	0.35 ⁽⁸⁾	
40	1	1.19	1.75	3.70 ⁽⁷⁾	1	0.63	0.46	0.28 ⁽⁸⁾		40	1	<u>1.191.25</u>	<u>1.751.85</u>	3.70<u>4.10</u>⁽⁷⁾	<u> 10.80</u>	0.63 0.59	0.46<u>0.42</u>	0.28<u>0.23</u>⁽⁸⁾	
65	1	1.55	2.25	4.65 ⁽⁷⁾	1	0.51	0.39	0.23 ⁽⁸⁾		<u>6570</u>	1	<u>1.551.25</u>	<u>2.25</u> 2.30	4.65 <u>6.40</u> ⁽⁷⁾	<u> 10.80</u>	0.51<u>0.56</u>	<u>0.390.30</u>	0.23<u>0.18</u>⁽⁸⁾	
				Other Sy	/stems									Other Sys	stems				
5	1	1	1	(5)	1	0.97	0.85	(5)		5	1	1	1	(5)	1	0.97<u>1</u>	0.85	(5)	
20	1	1	1.18	(5)	1	0.80	0.60	(5)		20	1	1	1.18	(5)	1	0.80	0.60	(5)	
40	1	1.19	1.75	(5)	1	0.63	0.46	(5)		40	1	1.19 1.25	1.75 1.85	(5)	1 0.80	0.63 0.59	0.46 0.44	(5)	
65	1	1.55	2.25	(5)	1	0.51	0.39	(5)		65 70	1	1.55 1.37	2.252.30	(5)	1 0.80	0.51 0.56	0.390.30	(5)	
	-				1 -						-							11	
Notes t (1) For line (2) For line	o Table intermed ar interp intermed ar interp	4.1.8.11 .: diate valu olation. diate valu olation us	es of the es of the ing the va	spectral ra fundament alues of M	tio S(0.2 al lateral)/S(5.0), N period, T d in accor	/ν and J shal a, S(Ta)Mν sh dance with N	l be obtained all be obtaine ote (1).	by ed by	Notes t (1) For line grea (2) For obta	o Table interme ar interp rpolation ater than interme ained by	4.1.8.11.: diate value polation. <u>Fo</u> <u>n with their</u> <u>n 70, Mv an</u> diate value <u>v log-log in</u>	es of the s or <u>spectral</u> values at d J shall t es of the fu terpolation	Dectral ratio $\frac{1}{2}$ ratios less the spectral ratio $\frac{1}{2}$ De taken as explored at the spectral lateration of the spectral	S(0.2)/Se nan 5, Me atio of 0 t equal to t ateral pe e obtaine	(5.0), M _v and <u>and J shall</u> <u>aken as equ</u> their values priod, T _a , <u>in c</u> d by linear in	d J shall be obtained be obtained ial to 1. For at a spectral ases where interpolation	bbtained by <u>I by linear</u> <u>spectral ratios</u> <u>ratio of 70.</u> <u>S(T_a) is</u> <u>using the</u>	
 (3) (4) For a combination of different seismic force resisting systems (SFRS) not given in Table 4.1.8.11. that are in the same direction under consideration, use the highest M_v factor of all the SFRS and the corresponding value of J. (5) 							ble r of all	valu line valu (3) (4) For 4.1. the (5)	<u>ues of M</u> ar interp ues of M a comb 8.11. th SFRS <u>s</u>	v obtained polation, the obtained ination of c at are in th and the co	<u>in accorda</u> <u>product</u> in accorda different se e same di rrespondir	ance with No S(T _a)M _v shal ance with No sismic force r rection unde ng value of J	te (1). In I be obta te (1). resisting r conside	<u>cases wher</u> ined by lines systems (SP eration, use	<u>e S(T_a) is ol</u> ar interpolati FRS <u>s</u>) not gi the highest l	otained by on using the ven in Table M _v factor of all			
 9) Torsional effects that are concurrent with the effects of the forces mentioned in Sentence (7) and are caused by the simultaneous actions of the following torsional moments shall be considered in the design of the structure according to Sentence (11): a) 10) Torsional sensitivity shall be determined by calculating the ratio B_x for each level x according to the following equation for each orthogonal direction determined independently: 								 9) Torsi Sentenci shall be a) 10) Torsi accordini 	onal effe ce (7) ar conside sional se ng to the	ects that ar nd are caus ered in the ensitivity sh e following	e concurre sed by the design of nall be det equation f	ent with the e simultaneou the structure ermined by c or each orthe	effects of is action: accordi accordi calculatin ogonal d	f the forces F s of the follo ng to Senter og the ratio E irection dete	nentioned <u>d</u> wing torsion nce (11): B _x for each le ermined inde	etermined in al moments evel x pendently:			
L									1										

PART 4 – CODE UPDATE INFORMATION

	PART 4 – CODE UPDATE INFORMATION					
NBC(AE) 2019	NBC(AE) 2023					
$B_x = \delta_{max} / \delta_{ave}$	$B_x = \delta_{max} / \delta_{ave}$					
where B =	where B =					
δ_{max} = maximum <i>storey</i> displacement at the extreme points of the structure, at level x in the direction of the earthquake induced by the equivalent static forces acting at distances $\pm 0.10 D_{nx}$ from the centres of mass at each floor, and δ_{ave} = average of the displacements at the extreme points of the structure at level x	δ_{max} = maximum <i>storey</i> displacement at the extreme points of the structure, at level x in the direction of the earthquake induced by the equivalent static forces determined in <u>Sentence (7)</u> acting at distances ± 0.10 D _{nx} from the centres of mass at each floor, and δ_{ave} = average of the displacements at the extreme points of the structure at level x					
produced by the above-mentioned forces.	produced by the above-mentioned forces determined in Sentence (7).					
 11) Torsional effects shall be accounted for as follows: a) for a <i>building</i> with B ≤ 1.7 or where I_EF_aS_a(0.2) is less than 0.35, by applying torsional moments about a vertical axis at each level throughout the <i>building</i>, derived for each of the following load cases considered separately: i) T_x = F_x(e_x + 0.10 D_{nx}), and ii) T_x = F_x(e_x - 0.10 D_{nx}) where F_x is the lateral force at each level determined according to Sentence (7) and where each element of the <i>building</i> is designed for the most severe effect of the above load cases, or b) for a <i>building</i> with B > 1.7, in cases where I_EF_aS_a(0.2) is equal to or greater than 0.35, by a Dynamic Analysis Procedure as specified in Article 4.1.8.12. 	 11) Torsional effects shall be accounted for as follows: a) for a <i>building</i> with B ≤ 1.7 or where I_EF_aS_a(0.2) is less than 0.35 in Seismic Category SC1 or SC2, by applying torsional moments about a vertical axis at each level throughout the <i>building</i>, derived for each of the following load cases considered separately: i) T_x = F_x(e_x + 0.10-D_{nx}), and ii) T_x = F_x(e_x - 0.10-D_{nx}) where F_x is the lateral force at each level determined according to in accordance with Sentence (7) and where each element of the <i>building</i> is designed for the most severe effect of the above load cases, or b) for a <i>building</i> with B > 1.7, in cases where I_EF_aS_a(0.2) is equal to or greater than 0.35 1.7 in Seismic Category SC3 or SC4, by a Dynamic Analysis Procedure as specified in Article 4.1, 9.42 					
12) Where the fundamental lateral period, T_a , is determined in accordance with Clause (3)(d) and the <i>building</i> is constructed with more than 4 <i>storeys</i> of continuous wood construction and has a timber SFRS consisting of shear walls with wood-based panels or of braced or moment-resisting frames as defined in Table 4.1.8.9., the lateral earthquake force, V, as determined in accordance with Sentence (2) shall be multiplied by 1.2 but need not exceed the value determined by using Clause (2)(c). (See Note A-4.1.8.10.(4).)	Article 4.1.8.12. 12) Where the fundamental lateral period, T_a , is determined in accordance with Clause (3)(d) and the <i>building</i> is constructed with more than 4 <i>storeys</i> of continuous wood construction and has a timber SFRS consisting of shear walls with wood-based panels or of braced or moment-resisting frames as defined in Table 4.1.8.9., the <u>specified</u> lateral earthquake force, V, as determined in <u>accordance with</u> -Sentence (2) shall be multiplied by 1.2 but need not exceed the value determined by using Clause (2)(c). (See Note A-4.1.8.10.(4 <u>5</u>) and (6).)					
4.1.8.12. Dynamic Analysis Procedure	4.1.8.12. Dynamic Analysis Procedure					
3) The ground motion histories used in the Numerical Integration Linear Time History Method shall be compatible with a response spectrum constructed from the design spectral acceleration values, S(T), defined in Sentence 4.1.8.4.(9). (See Note A-4.1.8.12.(3).)	3) The ground motion <u>time</u> histories used in the Numerical Integration Linear Time History Method shall be compatible with a response spectrum constructed from the design spectral acceleration values, $S(T)$, defined in Sentence 4.1.8.4.(96). (See Note A-4.1.8.12.(3).)					
5) Except as provided in Sentence (6), the design elastic base shear, V_{ed} , shall be equal to the elastic base shear, V_e , obtained from a Linear Dynamic Analysis.	5) Except as provided in Sentence (6), the <u>design adjusted</u> elastic base shear, V_{ed} , shall be equal to the elastic base shear, V_e , obtained from a Linear Dynamic Analysis.					
6) For structures located on sites other than Class F that have an SFRS with R_d equal to or greater than 1.5, the elastic base shear obtained from a Linear Dynamic Analysis may be multiplied by the larger of the following factors to obtain the design elastic base shear, V_{ed} :	6) For structures <u>buildings</u> located on sites a site designated as other than $\frac{\text{Class F-}X_{\text{F}}}{\text{Class F-}X_{\text{F}}}$ that have an SFRS with R _d equal to or greater than 1.5, the elastic base shear, V _e , obtained from a Linear Dynamic Analysis may be multiplied by the larger of the following factors to obtain the design elastic base shear, V _{ed} :					
$\frac{2S(0.2)}{2S(T_{\rm e})} \le 1.0$ and	25 (0.2)					
$S(0.5)/S(T_a) \le 1.0$	$\frac{25(0.2)}{35(T_a)} \le 1.0 (2/3)S(0.2) / S(T_a) \le 1.0$ and					
	$S(0.5)/S(T_a) \le 1.0$					
7) The design elastic base shear, V_{ed} , shall be multiplied by the importance factor, I_E , as determined in Article 4.1.8.5., and shall be divided by R_dR_o , as determined in Article 4.1.8.9., to obtain the design base shear, V_d .	7) The design elastic base shear, V_{ed_7} shall be multiplied by the <u>earthquake</u> importance factor, I_E , as determined in Article 4.1.8.5., and shall be divided by R_dR_o , as determined in Article 4.1.8.9., to obtain the <u>design base shear specified lateral earthquake force</u> , V_d .					
8) Except as required by Sentence (9) or (12), if the base shear, V_d , obtained in Sentence (7), is less than 80% of the lateral earthquake design force, V, of Article 4.1.8.11., V_d shall be taken as 0.8 V.	8) Except as required by Sentence (9) or (12), if the base shear, V_d , obtained as determined in Sentence (7), is less than 80% of the lateral earthquake design force, V, of as determined in Article 4.1.8.11., V_d shall be taken as 0.8 V.					

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
9) For irregular structures requiring dynamic analysis in accordance with Article 4.1.8.7., V_d shall be taken as the larger of the V_d determined in Sentence (7), and 100% of V.	9) For irregular structures requiring dynamic analysis in accordance with Article 4.1.8.7., V_d shall be taken as the larger of the V_d , as determined in Sentence (7), and 100% of $V_{,as}$ determined in Article 4.1.8.11.
10) Except as required by Sentence (11), the values of elastic <i>storey</i> shears, <i>storey</i> forces, member forces, and deflections obtained from the Linear Dynamic Analysis, including the effect of accidental torsion determined in Sentence (4), shall be multiplied by V_d/V_e to determine their design values, where V_d is the base shear.	10) Except as required by Sentence (11), the values of elastic <i>storey</i> shears, <i>storey</i> forces, member forces, and deflections obtained from the Linear Dynamic Analysis, including the effect of accidental torsion determined in Sentence (4), shall be multiplied by V_d/V_e to determine their design values, where V_d is the base shear.
11) For the purpose of calculating deflections, it is permitted to use a value for V based on the value for T_a determined in Clause 4.1.8.11.(3)(d) to obtain V_d in Sentences (8) and (9).	11) For the purpose of calculating deflections, it is permitted to use a value for of V based on the value for of T_a determined in Clause 4.1.8.11.(3)(d) to obtain V _d in Sentences (8) and (9).
12) For <i>buildings</i> constructed with more than 4 <i>storeys</i> of continuous wood construction, having a timber SFRS consisting of shear walls with wood-based panels or braced or moment-resisting frames as defined in Table 4.1.8.9., and whose fundamental lateral period, T_a , is determined in accordance with Clause 4.1.8.11.(3)(d), the design base shear, V _d , shall be taken as the larger value of V _d determined in accordance with Sentence (7) and 100% of V. (See Note A-4.1.8.10.(4).)	12) For <i>buildings</i> constructed with more than 4 <i>storeys</i> of continuous wood construction, having a timber SFRS consisting of shear walls with wood-based panels or braced or moment-resisting frames as defined in Table 4.1.8.9., and whose fundamental lateral period, T_a , is determined in accordance with Clause 4.1.8.11.(3)(d), the design base shear, V_{d_7} shall be taken as the larger value of V_{d_1} as determined in accordance with Sentence (7), and 100% of $V_{.}$ as determined in Article 4.1.8.11. (See Note A-4.1.8.10.(4 <u>5) and (6)</u> .)
4.1.8.15. Design Provisions	4.1.8.15. Design Provisions
 1) Except as provided in Sentences (2) and (3), diaphragms, collectors, chords, struts and connections shall be designed so as not to yield, and the design shall account for the shape of the diaphragm, including openings, and for the forces generated in the diaphragm due to the following cases, whichever one governs (see Note A-4.1.8.15.(1)): a) forces due to loads determined in Article 4.1.8.11. or 4.1.8.12. applied to the diaphragm are increased to reflect the lateral load capacity of the SFRS, plus forces in the diaphragm due to the transfer of forces between elements of the SFRS associated with the lateral load capacity of such elements and accounting for discontinuities and changes in stiffness in these elements, or b) a minimum force corresponding to the design-based shear divided by N for the diaphragm at level x. 	 1) Except as provided in Sentences (2) and (3), diaphragms, collectors, chords, struts and connections shall be designed so as not to yield, and the design shall account for the shape of the diaphragm, including openings, and for the forces generated in the diaphragm due to the following cases, whichever one governs-(see Note A-4.1.8.15.(1)): a) forces due to loads determined in Article 4.1.8.11. or 4.1.8.12. applied to the diaphragm are increased to reflect the lateral load capacity of the SFRS, plus forces in the diaphragm due to the transfer of forces between elements of the SFRS associated with the lateral load capacity of such elements and accounting for discontinuities and changes in stiffness in these elements, or b) a minimum force corresponding to the design based shear specified lateral earthquake force, V, divided by N for the diaphragm at level x.
 2) Steel deck roof diaphragms in <i>buildings</i> of less than 4 <i>storeys</i> or wood diaphragms that are designed and detailed according to the applicable referenced design standards to exhibit ductile behaviour shall meet the requirements of Sentence (1), except that they may yield and the forces shall be a) for wood diaphragms acting in combination with vertical wood shear walls, equal to the lateral earthquake design force, b) for wood diaphragms acting in combination with other SFRS, not less than the force corresponding to R_dR_o = 2.0, and c) 5) In cases where I_EF_aS_a(0.2) is equal to or greater than 0.35, the elements supporting any discontinuous wall, column or braced frame shall be designed for the lateral load capacity of the components of the SFRS they support. (See Note A-4.1.8.15.(5).) 	 2) Steel deck roof diaphragms in <i>buildings</i> of less than 4 <i>storeys</i> or wood diaphragms that are designed and detailed according to the applicable referenced design standards to exhibit ductile behaviour shall meet the requirements of Sentence (1), except that they may yield and the forces shall be a) for wood diaphragms acting in combination with vertical wood shear walls, equal to the specified lateral earthquake design-force, <u>V</u>, b) for wood diaphragms acting in combination with other SFRSs, not less than the force corresponding to R_dR_o = 2.0, and c) 5) In cases where I_EF_aS_a(0.2) Where the Seismic Category is equal to SC3 or greater than 0.35 SC4, the elements supporting any discontinuous wall, column or braced frame shall be designed for the lateral load capacity of the components of the SFRS they support. (See Note A-4.1.8.15.(5).)
4.1.8.16. Foundation Provisions	4.1.8.16. Foundation Provisions
 3) The shear and overturning resistances of the <i>foundation</i> determined using a bearing stress equal to 1.5 times the factored bearing strength of the <i>soil</i> or <i>rock</i> and all other resistances equal to 1.3 times the factored resistances need not exceed the design forces determined in Sentence 4.1.8.7.(1) using $R_dR_o = 1.0$, except that the factor of 1.3 shall not apply to the portion of the resistance to uplift or overturning resulting from gravity loads. 	3) The shear and overturning resistances of the <i>foundation</i> determined using a bearing stress equal to 1.5 times the factored bearing strength of the <i>soil</i> or <i>rock</i> and all other resistances equal to 1.3 times the factored resistances need not exceed the design forces determined in Sentence 4.1.8.7.(1) using $R_dR_o = 1.0$, except that the factor of 1.3 shall not apply to the portion of the resistance to uplift or overturning resulting from gravity loads.
6) In cases where $I_EF_aS_a(0.2)$ is equal to or greater than 0.35, the following requirements shall	6) In cases where I _E F _a S _a (0.2) Where the Seismic Category is equal to SC3 or greater than 0.35

				PA	RT 4 – CODE UPDATE INFORMATION			
NBC(AE) 2019					NBC(AE) 2023			
be satisfied:				SC4, the follo	owing requirements shall be satisfied:			
a)				a)				
7) At sites where $I_EF_aS_a(0.2)$ is equal to or greater than 0.35, basement to resist earthquake lateral pressures from backfill or natural ground. (S	<i>t</i> walls sh See Note	7) <u>At sites where IEFaSa(0.2)</u> <u>Where the Seismic Category</u> is <u>equal to SC3</u> or <u>greater than 0.35</u> <u>SC4</u> , <i>basement</i> walls shall be designed to resist earthquake lateral pressures from backfill or natural ground. (See Note A-4.1.8.16.(7).)						
8) At sites where $I_EF_aS_a(0.2)$ is greater than 0.75, the following requiren	nents sha	8) At sites wh	nere l _E F _a S _a (0.2) is greater than 0.75-Where the Seismic Ca uirements shall be satisfied:	tegory is	<u>s SC4</u> ,	the		
 a) b) spread footings founded on <i>soil</i> defined as Site Class E or F sh continuous ties in not less than two directions. 	nall be int	 a) b) spread footings founded on <i>soil</i> defined as Site Class E or F designated as X_V, where <u>V_{s30} is less than or equal to 180 m/s</u>, X_E or X_F shall be interconnected by continuous ties in not less than two directions. 						
9) Each segment of a tie between elements that is required by Clauses designed to carry by tension or compression a horizontal force at least factored <i>pile</i> cap or column vertical load in the elements it connects, mu 0.10 $I_EF_aS_a$ (0.2), unless it can be demonstrated that equivalent restrain other means. (See Note A-4.1.8.16.(9).)	s (6)(a) or equal to ultiplied b nts can b	9) Each segment of a tie between elements that is required by <u>Clauses Clause</u> (6)(a) or (8)(b) shall be designed to carry by tension or compression a horizontal force at least equal to the greatest factored <i>pile</i> cap or column vertical load in the elements it connects, multiplied by a factor of $0.10 \text{ l}_{\text{E}}\text{F}_{a}\text{S}_{a}$ 0.11 (0.2), unless it can be demonstrated that equivalent restraints can be provided by other means. (See Note A-4.1.8.16.(9).)						
4.1.8.18. Elements of Structures, Non-structural Components and (See Note A-4.1.8.18.)	Equipmo	ent		4.1.8.18. Ele (See Note A-	ments of Structures, Non-structural Components and E 4.1.8.18.)	Equipmo	ent	
1) Except as provided in Sentences (2), (7) and (16), elements and condescribed in Table 4.1.8.18. and their connections to the structure shall accommodate the <i>building</i> deflections calculated in accordance with Ar element or component deflections calculated in accordance with Sentendesigned for a lateral force, V_p , distributed according to the distribution	nponents I be desig rticle 4.1. nce (9), a of mass:	1) Except as provided in Sentences (2), (7) and (16), elements and components of <i>buildings</i> described in Table 4.1.8.18. and their connections to the structure shall be designed to accommodate the <i>building</i> deflections calculated in accordance with Article 4.1.8.13. and the element or component deflections calculated in accordance with Sentence (9), and shall be designed for a <u>specified</u> lateral <u>earthquake</u> force, V _p , distributed according to the distribution of mass:						
$V_{p} = 0.3F_{a}S_{a}(0.2)I_{E}S_{p}W_{p}$					$V_{p} = 0.3 F_{a} S_{a} \underline{S}(0.2) I_{E} S_{p} W_{p}$			
where F_a = as defined in Sentence 4.1.8.4.(7), $S_a(0.2)$ =spectral response acceleration value at 0.2 s, as defined in Sec I_E = importance factor for the <i>building</i> , as defined in Article 4.1.8.5. S_p =	entence 4	4.1.8.4.	.(1),	where $F_a = as d$ $S_a(0.2) = desi$ Sen $I_E = earthered S_D = \dots$	lefined in Sentence 4.1.8.4.(7), ign_spectral response acceleration value at <u>a period of</u> 0.2 s tence 4.1.8.4.(4 <u>6</u>), <u>hquake</u> importance factor for the <i>building</i> , as defined in Art	s, as de icle 4.1.	fined ir 8.5.,	ı
Table 4.1.8.18. Elements of Structures and Non-structural Components an Forming Part of Sentences 4.1.8.18.(1), (2), (3), (6) a	id Equip and (7)	ment(1	1)	Elem Forming	Table 4.1.8.18.tents of Structures and Non-structural Components andg Part of Sentences 4.1.8.18.(1), (2), to (3), (6), and (7) and $4.1.8.23.(2)(c)$ and (3)(c)	d Equip ∣ (16), ar	ment(nd Clau	1) Jses
Category Part or Portion of Building	Cp	Ar	Rp	Category	Part or Portion of Building	Cp	Ar	Rp
				Architectura	al and Structural Components			
All exterior and interior walls except those in Category 2 or 3	1.00	1.00	2.50	1 A	All exterior and interior walls <u>, and cladding panels</u> , except hose in Category 2 or 3	1.00	1.00	2.50
2 Cantilever parapet and other cantilever walls except retaining walls	1.00	2.50	2.50	2 0	Cantilever parapet and other cantilever walls <u>, including</u> cantilever cladding panels, except retaining walls	1.00	2.50	2.50
Masonry or concrete fences more than 1.8 m tall	1.00	1.00	2.50	10 N	 Masonry or concrete fences more than 1.8 m tall	1.00	1.00	2.50
			2.00	Mechanical	and Electrical Components			2.00
17 Electrical cable trays, bus ducts, conduits	1.00	2.50	2.50	17 E	Electrical cable trays, bus ducts, conduits	1.00	2.50	2.50

	PART 4 – CODE UPDATE INFORMATION						
NBC(AE) 2019	NBC(AE) 2023						
2) For <i>buildings</i> other than <i>post-disaster buildings</i> , seismically isolated <i>buildings</i> , and <i>buildings</i> with supplemental energy dissipation systems, where $I_EF_aS_a(0.2)$ is less than 0.35, the requirements of Sentence (1) need not apply to Categories 6 through 22 of Table 4.1.8.18.	2) For <i>buildings</i> in <u>Seismic Category SC1 or SC2</u> , other than <i>post-disaster buildings</i> , seismically isolated <i>buildings</i> , and <i>buildings</i> with supplemental energy dissipation systems, where $I_EF_aS_a(0.2)$ is less than 0.35, the requirements of Sentence (1) need not apply to Categories 6 through 22 of Table 4.1.8.18.						
3) For the purpose of applying Sentence (1) for Categories 11 and 12 of Table 4.1.8.18., elements or components shall be assumed to be flexible or flexibly connected unless it can be shown that the fundamental period of the element or component and its connection is less than or equal to 0.06 s, in which case the element or component is classified as being rigid or rigidly connected.	3) For the purpose of applying Sentence (1) for Categories 11 and 12 of Table 4.1.8.18., elements or components shall be assumed to be flexible or flexibly connected unless it can be shown that the fundamental period of the element or component and its connection is less than or equal to 0.06 s, in which case the element or component is classified as being rigid <u>or and</u> rigidly connected.						
 7) Connections to the structure of elements and components listed in Table 4.1.8.18. shall be designed to support the component or element for gravity loads, shall conform to the requirements of Sentence (1), and shall also satisfy these additional requirements: a) friction due to gravity loads shall not be considered to provide resistance to seismic forces, b) c) R_p for anchorage using shallow expansion, chemical, epoxy or cast-in-place anchors shall be 1.5, where shallow anchors are those with a ratio of embedment length to diameter of less than 8, 	 7) Connections to the structure of elements and components listed in Table 4.1.8.18. shall be designed to support the component or element for gravity loads, shall conform to the requirements of Sentence (1), and shall also satisfy these additional requirements: a) except as provided in Sentence (17), friction due to gravity loads shall not be considered to provide resistance to seismic earthquake forces, b) c) R_p for anchorage using shallow expansion, chemical, epoxy or post-installed mechanical, post-installed adhesive, and cast-in-place anchors in concrete shall be 1.5, where shallow anchors are those with a ratio of embedment length to diameter of less than 8, d) post-installed mechanical, drop-in and adhesive anchors in concrete shall be pre-qualified for seismic applications by cyclic load testing in accordance with i) CSA A23.3, "Design of concrete structures," and ii) ACI 355.2, "Qualification of Post-Installed Mechanical Anchors in Concrete (ACI 355.2-19) and Commentary," or ACI 355.4, "Qualification of Post-Installed Adhesive Anchors in Concrete (ACI 355.4, "Qualification of Post-Installed adhesive anchors in masonry and post-installed mechanical anchors in Structural steel shall be pre-qualified for seismic applicable, e) post-installed mechanical and adhesive anchors in masonry and post-installed 						
 d) power-actuated fasteners and drop-in anchors shall not be used for tension loads, e) 	 <u>cyclic tension load testing (see Note A-4.1.8.18.(7)(e)).</u> <u>df</u>) power-actuated fasteners and drop-in anchors shall not be used for <u>cyclic</u> tension loads, <u>eg</u>) 						
13) Free-standing steel pallet storage racks are permitted to be designed to resist earthquake effects using rational analysis, provided the design achieves the minimum performance level required by Subsection 4.1.8. (See Note A-4.1.8.18.(13).)	13) Free-standing steel pallet storage racks are permitted to be designed to resist earthquake effects using rational analysis, provided the design achieves the minimum performance level required by Subsection 4.1.8. (See Note A-4.1.8.18.(13) and 4.4.3.1.(1).)						
 15) Glass need not comply with Sentence (14), provided at least one of the following conditions is met: a) I_EF_aS_a(0.2) < 0.35, b) the glass has sufficient clearance from its frame such that D_{clear} ≥ 1.25 D_p calculated as follows: 	 15) Glass need not comply with Sentence (14), provided at least one of the following conditions is met: a) I_EF_aS_a(0.2) < 0.35-the Seismic Category is SC1 or SC2, b) the glass has sufficient clearance from its frame such that D_{clear} ≥ 1.25-D_p calculated as follows: 						
 16) For structures with supplemental energy dissipation, the following criteria shall apply: a) the value of S_a(0.2) used in Sentence (1) shall be determined from the mean 5% damped floor spectral acceleration values at 0.2 s by averaging the individual 5% damped floor spectra at the base of the structure determined using Non-Linear Dynamic Analysis, and b) the value of F_a used in Sentence (1) shall be 1. 	 16) For structures with supplemental energy dissipation, the following criteria shall apply elements and components of <i>buildings</i> described in Table 4.1.8.18. and their connections to the structure shall be designed for a specified lateral earthquake force, V_p, determined at each floor level as follows: a) the value of S_a(0.2) used in Sentence (1) shall be determined from the mean 5% damped floor spectral acceleration values at 0.2 s by averaging the individual 5% damped floor spectra at the base of the structure determined using Non-Linear Dynamic Analysis, and b) the value of F_a used in Sentence (1) shall be 1. 						

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
	where
	S_{sed} = peak spectral acceleration, $S_a(T,X)$, in the period range of T = 0 s to T = 0.5 s
	determined from the mean 5%-damped floor spectral acceleration values by
	averaging the individual 5%-damped floor response spectra at the centroid of the floor
	area at that floor level determined using Non-linear Dynamic Analysis, and
	$\underline{I_{E}, C_{p}, A_{r}, R_{p}, W_{p}} = as defined in Sentence (1).$
	(See Note A-4.1.8.18.(16).)
	17) For a ballasted array of interconnected solar panels mounted on a roof, where $I_ES(0.2)$ is less than or equal to 1.0, friction due to gravity loads is permitted to be considered to provide resistance to seismic forces, provided
	 <u>a) the roof is not normally occupied.</u> <u>b) the roof is surrounded by a parapet extending from the roof surface to not less than the</u>
	greater of i) 150 mm above the centre of mass of the array, and
	ii) 400 mm above the roof surface,
	<u>c) the height of the centre of mass of the array above the roof surface is less than the lesser of</u>
	i) 900 mm, and
	ii) one half of the smallest plan dimension of the supporting base of the array,
	d) the foot slope at the location of the array is less than of equal to 3 ⁻ ,
	e) the factored inclion resistance calculated using the kinetic inclion coefficient determined in accordance with Septence (18) and a resistance factor of 0.7 is greater
	than or equal to the specified lateral earthquake force. V. on the array determined in
	accordance with Sentence (1) using values of $A_{\rm r} = 1.0$, $A_{\rm r} = 3.0$, $C_{\rm r} = 1.0$, and $R_{\rm r} =$
	1.25
	f) the minimum clearance between the array and other arrays or fixed objects is the
	greater of
	i) 225 mm, and
	ii) 1 500($I_ES(0.2) - 0.4$) ² , in mm, and
	g) the minimum clearance between the array and the roof parapet is the greater of
	i) 450 mm, and
	<u>ii) 3 000(I_ES(0.2) – 0.4)², in mm.</u>
	18) For the purpose of Clause (17)(e), the kinetic friction coefficient shall be determined in
	accordance with ASTM G115. "Standard Guide for Measuring and Reporting Friction
	Coefficients," through experimental testing that
	a) is carried out by an accredited laboratory on a full-scale array or a prototype of the
	array,
	b) models the interface between the supporting base of the array and the roof surface,
	and
	c) accounts for the adverse effects of anticipated climatic conditions on the friction
	1000000000000000000000000000000000000
	(<u>See Note A-4.1.0.10.(10).)</u>
4.1.8.19. Seismic Isolation	4.1.8.19. Seismic Isolation
1) For the purposes of this Article and Article 4.1.8.20., the following terms shall have the meanings stated herein:	1) For the purposes of this Article and Article 4.1.8.20., the following terms shall have the meanings stated herein:
d) "isolator unit" is a structural element of the isolation system that permits large lateral	d) "isolator unit" is a structural element of the isolation system that permits large lateral
deformations under lateral earthquake design forces and is characterized by vertical-	deformations under lateral earthquake design forces and is characterized by vertical-
load-carrying capability combined with increased horizontal flexibility and high vertical	load-carrying capability combined with increased horizontal flexibility and high vertical
stiffness, energy dissipation (hysteretic or viscous), self-centering capability, and lateral	stiffness, energy dissipation (hysteretic or viscous), self-centering capability, and lateral
restraint (sufficient elastic stiffness) under non-seismic service lateral loads:	restraint (sufficient elastic stiffness) under non-seismic service lateral loads:
e)	e)
2) Every seismically isolated structure and every portion thereof shall be analyzed and designed in accordance with	2) Every seismically isolated structure and every portion thereof shall be analyzed and designed in accordance with

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
a) the loads and requirements prescribed in this Article and Article 4.1.8.20.,	a) the loads and requirements prescribed in this Article and Article 4.1.8.20.,
 4) The ground motion histories used in Sentence (3) shall be a) b) compatible with i) a response spectrum derived from the design spectral acceleration values, S(T), defined in Sentence 4.1.8.4.(9) for ground conditions of Site Classes A, B and C, and 	 4) The ground motion <u>time</u> histories used in Sentence (3) shall be a) b) compatible with i) a response spectrum derived from the design spectral acceleration values, S(T), defined in Sentence 4.1.8.4.(96) for ground conditions of Site Classes A, B and C site designations Xv, where V_{s30} is greater than 360 m/s, XA, XB and Xc, and ii) a 5%-damped response spectrum based on a site-specific evaluation for ground
 ii) a 5% damped response spectrum based on a site-specific evaluation for ground conditions of Site Classes D, E and F, and c) amplitude-scaled in an appropriate manner over the period range of 0.2 T₁ to 1.5 T₁, where T₁ is the period of the isolated structure determined using the post-yield stiffness of the isolation system in the horizontal direction under consideration, or the period specified in Sentence 4.1.8.20.(1) if the post-yield stiffness of the isolation system is not well defined. (See Note A-4.1.8.19.(4) and 4.1.8.21.(5).) 	 conditions of Site Classes D, E and F site designations X_V, where V_{s30} is less than or equal to 360 m/s, X_D, X_E and X_F, and c) amplitude-scaled in an appropriate manner over the period range of 0.2-T₁ to 1.5-T₁, where T₁ is the period of the isolated structure determined using the post-yield stiffness of the isolation system in the horizontal direction under consideration, or the period specified in Sentence 4.1.8.20.(1) if the post-yield stiffness of the isolation system is not well defined. (See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)
4.1.8.21. Supplemental Energy Dissipation	4.1.8.21. Supplemental Energy Dissipation
 2) Every structure with a supplemental energy dissipation system and every portion thereof shall be designed and constructed in accordance with a) the loads and requirements prescribed in this Article and Article 4.1.8.22., b) 	 2) Every structure with a supplemental energy dissipation system and every portion thereof shall be designed and constructed in accordance with a) the loads and requirements prescribed in this Article and Article 4.1.8.22., b)
 4) For the analysis and modeling of structures with supplemental energy dissipation devices, the following criteria shall apply: a) b) for SFRS with R_d > 1.0, the non-linear hysteretic behaviour of the SFRS shall be explicitly—with sufficient detail—accounted for in the modeling and analysis of the structure, c) 	 4) For the analysis and modeling of structures with supplemental energy dissipation devices, the following criteria shall apply: a) b) for an_SFRS with R_d > 1.0, the non-linear hysteretic behaviour of the SFRS shall be explicitly—with sufficient detail—accounted for in the modeling and analysis of the structure, c)
 5) The ground motion histories used in Sentence (4) shall be a) b) compatible with a 5% damped response spectrum derived from the design spectral acceleration values, S(T), defined in Sentence 4.1.8.4.(9), and c) amplitude-scaled in an appropriate manner over the period range of 0.2 T₁ to 1.5 T₁, where T₁ is the fundamental lateral period of the structure with the supplemental energy dissipation system. (See Note A-4.1.8.19.(4) and 4.1.8.21.(5).) 	 5) The ground motion <u>time</u> histories used in Sentence (4) shall be a) b) compatible with a 5%-<u>-</u>damped response spectrum derived from the design spectral acceleration values, S(T), defined in Sentence 4.1.8.4.(<u>96</u>), and c) amplitude-scaled in an appropriate manner over the period range of 0.2-T₁ to 1.5-T₁, where T₁ is the fundamental lateral period of the structure with the supplemental energy dissipation system. (See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)
4.1.8.22. Supplemental Energy Dissipation Design Considerations	4.1.8.22. Supplemental Energy Dissipation Design Considerations
5) Elements of the supplemental energy dissipation system, except the supplemental energy dissipation devices themselves, shall be designed to remain elastic for the design loads.	5) Elements All components of the a supplemental energy dissipation system device, except that portion of the supplemental device that dissipates energy dissipation devices themselves, shall be designed to remain elastic for the design loads.
 7) Supplemental energy dissipation devices and other components of the supplemental energy dissipation system shall be designed in accordance with Sentence (1) with consideration of the following: a) low-cycle, large-displacement degradation due to seismic loads, b) 	 7) Supplemental energy dissipation devices and other components of the supplemental energy dissipation system shall be designed in accordance with Sentence (1) with consideration of the following: a) low-cycle, large-displacement degradation due to seismic earthquake loads, b)
N/A	4.1.8.23. Additional Performance Requirements for Post-disaster Buildings, High Importance Category Buildings, and a Subset of Normal Importance Category Buildings
	1) Buildings designed in accordance with Articles 4.1.8.19. to 4.1.8.22. need not comply with this Article.

	PART 4 – CODE UPDATE INFORMATION
NBC(AE) 2019	NBC(AE) 2023
	 2) The design of <i>post-disaster buildings</i> in Seismic Category SC2, SC3 or SC4 shall be verified using 5%-damped spectral acceleration values based on a 5% probability of exceedance in 50 years and shall satisfy the following requirements: a) the <i>building</i> shall be shown to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentence 4.1.8.11.(2) using I_E = 1.0 and R_dR_o = 1.3, b) the largest inter<i>storey</i> deflection at any level of the <i>building</i>, as determined in accordance with Sentence 4.1.8.13.(2) using I_E = 1.0 and R_dR_o = 1.0, shall not exceed 0.005h_s, and c) the connections of elements and components of the <i>building</i> described in Table 4.1.8.18. with R_p > 1.5 shall be shown to behave elastically for a specified lateral earthquake force, V_p, determined in accordance with Sentence 4.1.8.18.(1) using R_p = 1.5.
	 3) The design of High Importance Category <i>buildings</i> in Seismic Category SC3 or SC4 shall be verified using 5%-damped spectral acceleration values based on a 10% probability of exceedance in 50 years and shall satisfy the following requirements: a) the <i>building</i> shall be shown to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentence 4.1.8.11.(2) using I_E = 1.0 and R_dR_o = 1.3, b) the largest inter<i>storey</i> deflection at any level of the <i>building</i>, as determined in accordance with Sentence 4.1.8.13.(2) using I_E = 1.0, shall not exceed 0.005h_s, and c) the connections of elements and components of the <i>building</i> described in Table 4.1.8.18. with R_p > 1.3 shall be shown to behave elastically for a specified lateral earthquake force, V_p, determined in accordance with Sentence 4.1.8.18.(1) using R_p = 1.3.
	4) For Normal Importance Category <i>buildings</i> in Seismic Category SC4 with a height above <i>grade</i> of more than 30 m, the structural framing elements not considered to be part of the SFRS shall be designed to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentence 4.1.8.11.(2) using spectral acceleration values based on a 10% probability of exceedance in 50 years and $R_dR_0 = 1.3$.
	5) For the purposes of applying Sentences (2) to (4), torsional moments due to accidental eccentricities need not be considered if B, as determined in accordance with Sentence 4.1.8.11.(10), does not exceed 1.7.
	6) For the purposes of applying Sentences (2) to (4), elements of the SFRS and structural framing elements not considered to be part of the SFRS, when included in the analysis, shall be modeled in accordance with Sentence 4.1.8.3.(8) using elastic properties.
	7) All other requirements of Articles 4.1.8.2. to 4.1.8.18. shall be satisfied in meeting the additional requirements of this Article.
4.2.2.1. Subsurface Investigation	4.2.2.1. Subsurface Investigation
1) A subsurface investigation, including groundwater conditions, shall be carried out by or under the direction of a registered engineering professional having knowledge and experience in planning and executing such investigations to a degree appropriate for the <i>building</i> and its use, the ground and the surrounding site conditions. (See Note A-4.2.2.1.(1).)	1) A subsurface investigation, including groundwater conditions, shall be carried out by or under the direction of a registered engineering professional having knowledge and experience in planning and executing such investigations to a degree appropriate for the <i>building</i> and its use, the ground and the surrounding site conditions. (See Note A-4.2.2.1.(1).)
4.2.3.2. Preservation Treatment of Wood	4.2.3.2. Preservation Treatment of Wood
1) Wood exposed to <i>soil</i> or air above the lowest anticipated <i>groundwater</i> table shall be treated with preservative in conformance with CAN/CSA-O80 Series, "Wood Preservation," and the requirements of the appropriate commodity standard as follows:	1) Wood exposed to <i>soil<u>. rock</u></i> or air above the lowest anticipated <i>groundwater</i> table shall be treated with preservative in conformance with CAN/CSA-O80 Series, "Wood Ppreservation," and the requirements of the appropriate commodity standard as follows:

Change reflects updated definition in the National Building Code - Alberta Edition 2023.

PART 4 – CODE UPDATE INFORMATION	
NBC(AE) 2019	NBC(AE) 2023
 a) CAN/CSA-O80.2, "Processing and Treatment," b) CAN/CSA-O80.3, "Preservative Formulations," or c) CSA O80.15, "Preservative Treatment of Wood for Building Foundation Systems, Basements, and Crawl Spaces by Pressure Processes." 	 ab) CAN/CSA-O80.2, "Processing and ∓treatment," or bc) CAN/CSA-O80.3, "Preservative Fformulations,." or c) CSA O80.15, "Preservative Treatment of Wood for Building Foundation Systems, Basements, and Crawl Spaces by Pressure Processes."
2) Where timber has been treated as required in Sentence (1), it shall be cared for as provided in AWPA M4, "Care of Preservative-Treated Wood Products," as revised by Clause 6 of CAN/CSA-O80 Series, "Wood Preservation."	2) Where timber has been Wood treated as required in Sentence (1), it shall be cared for as provided in AWPA M4, "Care of Preservative-Treated Wood Products," as revised by Clause 64 of CAN/CSA-O80.0-Series, "General requirements for Wwood Ppreservation."
4.2.4.1. Design Basis	4.2.4.1. Design Basis
 The design of <i>foundations</i>, <i>excavations</i> and <i>soil-</i> and <i>rock</i>-retaining structures shall be based on a <i>subsurface investigation</i> carried out in conformance with the requirements of this Section, and on any of the following, as appropriate: application of generally accepted geotechnical and civil engineering principles by a <i>registered engineering professional</i> especially qualified in this field of work, as provided in this Section and other Sections of Part 4, 	 1) The design of <i>foundations</i>, <i>excavations</i> and <i>soil-</i> and <i>rock</i>-retaining structures shall be based on a <i>subsurface investigation</i> carried out in conformance with the requirements of this Section, and on any of the following, as appropriate: a) application of generally accepted geotechnical and civil engineering principles by a <i>registered engineering-professional</i> especially qualified in this field of work, as provided in this Section and other Sections of Part 4, b)
3) For the purpose of the application of the load combinations given in Table 4.1.3.2A, the geotechnical components of loads and the factored geotechnical resistances at ULS shall be determined by a suitably qualified and experienced <i>registered engineering professional</i> . (See Note A-4.2.4.1.(3).)	3) For the purpose of the application of the load combinations given in Table 4.1.3.2A, the geotechnical components of loads and the factored geotechnical resistances at ULS shall be determined by a suitably qualified and experienced <i>registered ongineering-professional</i> . (See Note A-4.2.4.1.(3).)
4) Geotechnical components of service loads and geotechnical reactions for SLS shall be determined by a suitably qualified and experienced <i>registered engineering professional</i> .	4) Geotechnical components of service loads and geotechnical reactions for SLS shall be determined by a suitably qualified and experienced <i>registered engineering professional</i> .
6) Communication, interaction and coordination between the <i>designer</i> and the <i>registered engineering professional</i> responsible for the geotechnical aspects of the <i>project</i> shall take place to a degree commensurate with the complexity and requirements of the <i>project</i> .	6) Communication, interaction and coordination between the <i>designer</i> and the <i>registered</i> <i>engineering</i> professional responsible for the geotechnical aspects of the <i>project</i> shall take place to a degree commensurate with the complexity and requirements of the <i>project</i>.
4.2.7.2. Design of Deep Foundations	4.2.7.2. Design of Deep Foundations
2) Where <i>deep foundation units</i> are load tested, as required in Clause 4.2.4.1.(1)(c), the determination of the number and type of load test and the interpretation of the results shall be carried out by a <i>registered engineering professional</i> especially qualified in this field of work. (See Note A-4.2.7.2.(2).)	2) Where <i>deep foundation units</i> are load tested, as required in Clause 4.2.4.1.(1)(c), the determination of the number and type of load test and the interpretation of the results shall be carried out by a <i>registered engineering</i> -professional especially qualified in this field of work. (See Note A-4.2.7.2.(2).)
4.4.1. Air-Supported Structures	4.4.1. Air-, Cable- and Frame-Supported Membrane Structures
4.4.1.1. Design Basis for Air-Supported Structures	4.4.1.1. Design Basis for Air-, Cable- and Frame-Supported Membrane Structures
1) The structural design of <i>air- supported structures</i> shall conform to CSA S367, "Air-, Cable-, and Frame-Supported Membrane Structures," using the loads stipulated in Section 4.1., in accordance with limit states design in Subsection 4.1.3.	1) The structural design of <u>air-supported structures air-, cable- and frame- membrane</u> shall conform to CSA S367, "Air-, <u>Ccable-</u> , and <u>Ff</u> rame- <u>Ss</u> upported <u>Mm</u> embrane <u>Ss</u> tructures," using the loads stipulated in Section 4.1., in accordance with limit states design in Subsection 4.1.3.
4.4.2.1. Design Basis for Parking Structures and Repair Garages	4.4.2.1. Design Basis for Parking Structures Storage Garages and Repair Garages
1) Parking structures and <i>repair garages</i> shall be designed in conformance with CSA S413, "Parking Structures." (See Note A-4.4.2.1.(1).)	1) Parking structures <u>Storage garages</u> and repair garages, including associated ramps and pedestrian areas, shall be designed in conformance with <u>the performance requirements of CSA</u> S413, "Parking <u>S</u> tructures." (See Note A-4.4.2.1.(1).)
N/A	4.4.3. Storage Racks
N/A	4.4.3.1. Design Basis for Storage Racks
	1) Storage racks, including anchorage of racks, shall be designed for loads in accordance with this Part. (See Note A-4.1.8.18.(13) and 4.4.3.1.(1).)

Change reflects updated definition in the National Building Code - Alberta Edition 2023.

Change reflects updated definition in the National Building Code - Alberta Edition 2023.

Classification: Protected A