ed Strikethrough = deleted text

Blue underline $=$ New text

Review this document in conjunction with the National Building Code - 2023 Alberta Edition

PART 4 - CODE UPDATE INFORMATION			
NBC(AE) 2019		NBC(AE) 2023	
4.1.2.1. Loads and Effects (See Note A-4.1.2.1.)		4.1.2.1. Loads and Effects (See Note A-4.1.2.1.)	
Table 4.1.2.1. Importance Categories for Buildings Forming Part of Sentence 4.1.2.1.(3)		Table 4.1.2.1. Importance Categories for Buildings ${ }^{(1)}$ Forming Part of Sentence 4.1.2.1.(3)	
Use and Occupancy	Importance Category	Use and-OccupancyType of Building	Importance Category
Buildings that represent a low direct or indirect hazard to human life in the event of failure, including: - low human-occupancy buildings, where it can be shown that collapse is not likely to cause injury or other serious consequences - minor storage buildings	Low ${ }^{(1)}$	Buildings that represent-A Low Importance Category building is a building that represents a low direct or indirect hazard to human life in the event of structural failure, including: - low human-occupancy buildings, where it can be shown that collapse is not likely to cause injury or other serious consequences - minor storage buildings	Low ${ }^{(1)}$
All buildings except those listed in Importance Categories Low, High and Post-disaster	Normal	All buildings except those listed in Importance Categories Low, High and Post-disaster-A Normal Importance Category building is a building that does not meet the criteria for a Low Importance Category building, High Importance Category building or post-disaster building.	Normal
Buildings that are likely to be used as post-disaster shelters, including buildings whose primary use is: - as an elementary, middle or secondary school - as a community centre Manufacturing and storage facilities containing toxic, explosive or other hazardous substances in sufficient quantities to be dangerous to the public if released ${ }^{(1)}$	High	Buildings that are likely to be used as post-disaster shelters, including buildings whose primary use is: - as an elementary, middle or secondary school - as a community centre Manufacturing and storage facilities containing toxic, explosive or other hazardous substances in sufficient quantities to be dangerous to the public if released ${ }^{(1)}$ A High Importance Category building is a building that provides a greater degree of safety to human life than a Normal Importance Category building. Community centres and elementary, middle and secondary schools are High Importance Category buildings.	High
Post-disaster buildings are buildings that are essential to the provision of services in the event of a disaster, and include: - hospitals, emergency treatment facilities and blood banks - telephone exchanges - power generating stations and electrical substations - control centres for air, land and marine transportation - public water treatment and storage facilities, and pumping stations - sewage treatment facilities and buildings having critical national defence functions - buildings of the following types, unless exempted from this designation by the authority having jurisdiction:(2) - emergency response facilities - fire, rescue and police stations, and housing for vehicles, aircraft or boats used for such purposes - communications facilities, including radio and television stations	Post-disaster	Post-disaster buildings are buildings that are essential to the provision of services in the event of a disaster, and include: - hospitals, emergency treatment facilities and blood banks - telephone exchanges - power generating stations and electrical substations - control centres for air, land and marine transportation - public water treatment and storage facilities, and pumping stations - sewage treatment facilities and buildings having critical national defence functions - buildings of the following types, unless exempted from this designation by the authority having jurisdiction:(2) - emergency response facilities - fire, rescue and police stations, and housing for vehicles, aircraft or boats used for such purposes - communications facilities, including radio and television stations A post-disaster building.	Post-disaster

[^0]
Notes to Table 4.1.2.1.:

(1) See Note A-Table 4.1.2.1
(2) See Note A-1.4.1.2.(1), Post-disaster Buildings, in Division A

Unless stated otherwise, changes shown are a result of NBC 2020 changes.

a) 3.0 guard shall be
grand grenstands stadia, bleachers and arenas,
b) a concentrated load of 1.0 kN applied at any point, so as to produce the most critical effect, for access ways to equipment platforms, contiguous stairs and similar areas where the gathering of many people is improbable, and
c) $0.75 \mathrm{kN} / \mathrm{m}$ or a concentrated load of 1.0 kN applied at any point so as to produce the most critical effect, whichever governs for locations other than those described in Clauses (a) and (b).
2) The minimum specified horizontal load applied inward at the minimum required height of every required guard shall be half that specified in Sentence (1).
) Individual elements within the guard, including solid panels and pickets, shall be designed for a load of 0.5 kN applied outward over an area of 100 mm by 100 mm located at any point in the element or elements so as to produce the most critical effect.
4) The size of the opening between any two adjacent vertical elements within a guard shall not exceed the limits required by Part 3 when each of these elements is subjected to a specified live load of 0.1 kN applied in opposite directions in the in-plane direction of the guard so as to produce the most critical effect.
5) The loads required in Sentence (3) need not be considered to act simultaneously with the loads provided for in Sentences (1), (2) and (6).
6) The minimum specified load applied vertically at the top of every required guard shall be 1.5 kN / m and need not be considered to act simultaneously with the horizontal load provided for in Sentence (1).
7) Handrails and their supports shall be designed and constructed to withstand the following loads, which need not be considered to act simultaneously
a) a concentrated load not less than 0.9 kN applied at any point and in any direction for all handrails, and
a uniform load not less than $0.7 \mathrm{kN} / \mathrm{m}$ applied in any direction to handrails not located within dwelling units.

4.1.6.2. Specified Snow Load

(See Note A-4.1.6.2.)

1) The specified load, S, due to snow and associated rain accumulation on a roof or any other building surface subject to snow accumulation shall be calculated using the formula

$$
S=I_{s}\left[S_{s}\left(C_{b} C_{w} C_{s} C_{a}\right)+S_{r}\right]
$$

where

$I_{s}=$ importance factor for snow load as provided in Table 4.1.6.2.-A
$\mathrm{S}_{\mathrm{s}}=$.
$\mathrm{C}_{\mathrm{b}}=$.
$\mathrm{C}_{\mathrm{w}}=$ wind exposure factor in Sentences (3) and (4), Cs = slope factor in Sentences (5) (6) and (7),
$\mathrm{C}_{\mathrm{a}}=\ldots$
$\mathrm{S}_{\mathrm{r}}=\ldots$
2) The basic roof snow load factor, C_{b}, shall
a) be determined as follows
i)
ii)
required height of every required guard shall be
a) $3.0 \mathrm{kN} / \mathrm{m}$ for open viewing stands without fixed seats and for means of egress in grandstands, stadia, bleachers and arenas,
b) a concentrated load of 1.0 kN applied at any point, so as to produce the most critical effect, for access ways to equipment platforms, contiguous stairs and similar areas where the gathering of many people is improbable, and
c) $0.75 \mathrm{kN} / \mathrm{m}$ or a concentrated load of 1.0 kN applied at any point so as to produce the most critical effect, whichever governs, for locations other than those described in Clauses (a) and (b)

The minimum specified-horizontal load-specified live load applied inward at the minimum required height of every required guard shall be half that specified in Sentence (1).
3) Individual elements within the guard, including solid panels and pickets, shall be designed for a toad-horizontal specified live load of 0.5 kN applied outward over an area of 100 mm by 100 mm located at any point in on the element or elements so as to produce the most critical effect.
4) The size of the opening between any two adjacent vertical elements within a guard shall no exceed the limits required by Part 3 when each of these elements is subjected to a horizontal exceed the limits required by Part 3 when each of these elements is subjected to a horizontal so as to produce the most critical effect.

The toads-specified live loads required in Sentence (3) need not be considered to ac simultaneously with the loads provided for in Sentences (1), (2), (6) and (67).
6) The minimum specified load live load applied vertically at the top of every required guard shall be $1.5 \mathrm{kN} / \mathrm{m}$ and need not be considered to act simultaneously with the horizontal load specified live load provided for in Sentence Sentences (1), (3) and (7).
7) Handrails and their supports shall be designed and constructed to withstand the following load minimum specified live loads, which need not be considered to act simultaneously:
a) aconcentrated load not less than- 0.9 kN applied at any point and in any direction for all handrails, and
b) a uniform load not less than $0.7 \mathrm{kN} / \mathrm{m}$ applied in any direction to-for handrails not located within dwelling units.
(See Note A-4.1.6.2.)

1) The specified load, S, due to snow and associated rain accumulation on a roof or any other building surface subject to snow accumulation shall be calculated using the formula

$$
S=I_{s}\left[S_{s}\left(C_{b} C_{w} C_{s} C_{a}\right)+S_{r}\right]
$$

where
$I_{s}=$ importance factor for snow load as provided in Table 4.1.6.2-A
$\mathrm{S}_{\mathrm{s}}=$.
$\mathrm{C}_{\mathrm{b}}=$
$\mathrm{C}_{\mathrm{w}}=$ wind exposure factor in Sentences (3) and (4), Cs = slope factor in Sentences (5) (6) and to (7),
$\mathrm{C}_{\mathrm{a}}=$
$\mathrm{S}_{\mathrm{r}}=$
2) The basic roof snow load factor, C_{b}, shall
a) be determined as follows
i).

PART 4 - CODE UPDATE INFORMATION

$$
\mathrm{C}_{\mathrm{b}}=\frac{1}{\mathrm{C}_{\mathrm{w}}}\left[1-\left(1-0.8 \mathrm{C}_{\mathrm{w}}\right) \exp \left(-\frac{\mathrm{l}_{\mathrm{c}} \mathrm{C}_{\mathrm{w}}^{2}-70}{100}\right)\right] \text { for } \mathrm{l}_{\mathrm{c}}>\left(\frac{70}{\mathrm{C}_{\mathrm{w}}^{2}}\right)
$$

wher
$r_{c}=$ characteristic length of the upper or lower roof, defined as $2 w-w^{2} / I$, in m $\mathrm{w}=$...

- larger plan dimension of the roof, in m, or
b) Conform to Table 4.1.6.2.-B, using linear interpolation for intermediate values of $\mathrm{l}_{\mathrm{c}} \mathrm{C}_{\mathrm{w}}^{2}$ (See Note A-4.1.6.2.(2).

4.1.6.4. Specified Rain Load

4) Where scuppers are provided and where the position, shape and deflection of the loaded surface make an accumulation of rainwater possible, the loads due to rain shall be the lesser either the one-day rainfall determined in conformance with Subsection 1.1.3. or a depth of rainwater equal to 30 mm above the level of the scuppers, applied over the horizontal projection of the surface and tributary areas.

4.1.6.5. Multi-level Roofs

1) The drifting load of snow on a roof adjacent to a higher roof shall be taken as trapezoidal, as shown in Figure 4.1.6.5.-A and the accumulation factor, Ca, shall be determined as follows:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{a}}=\mathrm{C}_{\mathrm{a} 0}-\left(\mathrm{C}_{\mathrm{a} 0}-1\right)\left(\frac{\mathrm{x}}{\mathrm{x}_{\mathrm{d}}}\right) \text { for } 0 \leq \mathrm{x} \leq \mathrm{x}_{\mathrm{d}} \\
\text { or } \\
\mathrm{C}_{\mathrm{a}}=1.0 \text { for } \mathrm{x} \leq \mathrm{x}_{\mathrm{d}}
\end{gathered}
$$

where

$=$ peak value of C_{a} at $x=0$ determined in accordance with Sentences (3) and (4) and as shown in Figure 4.1.6.5.-B,
$\mathrm{x}=$..
$x_{d}=$.
2) ..

$$
\mathrm{C}_{\mathrm{b}}=\frac{1}{\mathrm{C}_{\mathrm{w}}}\left[1-\left(1-0.8 \mathrm{C}_{\mathrm{w}}\right) \exp \left(-\frac{\mathrm{l}_{\mathrm{c}} \mathrm{C}_{\mathrm{w}}^{2}-70}{100}\right)\right] \text { for } \mathrm{l}_{\mathrm{c}}>\left(\frac{70}{\mathrm{C}_{\mathrm{w}}^{2}}\right)
$$

where
$I_{c}=$ characteristic length of the upper or lower roof, defined as $2 w_{-}-w^{2} / l$, in m w
= larger plan dimension of the roof, in m ,-or
b) conform to Table 4.1.6.2.-B, using linear interpolation for intermediate values of $\mathrm{l}_{\mathrm{c}} \mathrm{C}_{\mathrm{w}^{-1}}^{2}$
c) $\frac{o r}{b e}$
be taken as equal to 1 for any roof structure with a mean height of less than $1+\mathrm{S}_{s} / \bar{\gamma}$, in m , above grade, where y is the specific weight of snow determined in accordance with Article 4.1.6.13.

4.1.6.4. Specified Rain Load

) Where scuppers are provided as secondary drainage systems and where the position, shape and deflection of the loaded surface make an accumulation of rainwater possible, the bads due to rain shall be the lesser of either the one-day rainfall determined in conformance with Subsection 1.1.3. or a depth of rainwater equal to 30 mm above the levelbottom of the scuppers, applied over the horizontal projection of the surface and tributary areas

4.1.6.5. Multi-level Roof

1) The drifting load of snow on a roof adjacent to a higher roof shall be taken as trapezoidal, as shew in Figure 4.65 -A and the accumulation factor Ca shall be determined as follows:

$$
\begin{gathered}
C_{a}=C_{a 0}-\left(C_{a 0}-1\right)\left(\frac{x}{x_{d}}\right) \text { for } 0 \leq x \leq x_{d} \\
\text { or } \\
C_{a}=1.0 \text { for } x \leq x_{d}
\end{gathered}
$$

where
$\mathrm{C}_{a 0}=$ peak value of C_{a} at $\mathrm{x}=0$ determined in accordance with Sentences (3) and to (45) and as shown in Figure 4.1.6.5.-B
$x=.$.
$x_{d}=$
2) ...

where the summations are over the height of the building for a given wind direction, h_{i} is the height above grade to level i, and w_{i} is the width normal to the wind direction at height h_{i}; the minimum effective width is the lowest value of the effective width considering all wind directions.
3) A building shall be classified as very dynamically sensitive if
a) its lowest natural frequency is less than or equal to 0.25 Hz , of
b) its height is more than 6 times its minimum effective width as defined in Clause (2)(c).

4.1.7.5. External Pressure Coefficients

1) Applicable values of external pressure coefficients, C_{p}, are provided in
a) Sentences (2) to (5), and
A) Article 4.1.7.6. for certain shapes of low buildings.
2) For the design of balcony guards, the internal pressure coefficient, C_{pi}, shall be taken as zero and the value of C_{p} shall be taken as ± 0.9, except that within a distance equal to the larger of 0.1 W and 0.1 D from a building corner, C_{p} shall be taken as ± 1.2.

4.1.7.6. External Pressure Coefficients for Low Buildings

2) For the design of the main structural system of the building, which is affected by wind pressures on more than one surface, the values of $\mathrm{C}_{\mathrm{p}} \mathrm{C}_{g}$ are provided in Figure 4.1.7.6.-A

Figure 4.1.7.6.-A

External peak values of CpCg for primary structural actions arising from wind load acting simultaneously on all surfaces of low buildings ($\mathrm{H} \leq 20 \mathrm{~m}$)

Forming Part of Sentence 4.1.7.6.(2)
where the summations are over the height of the building for a given wind direction, h is the height above grade grade to level i , and w_{i} is the width normal to the wind direction at height h ; the minimum effective width is the lowest value of the effective width considering all wind directions.
3) A building shall be classified as very dynamically sensitive if
a) its lowest natural frequency is less than or equal to 0.25 Hz , or
b) it contains a human occupancy and its height is more than 6 times its minimum effective width as defined in Clause (2)(c)

4.1.7.5. External Pressure Coefficients

1) Applicable values of external pressure coefficients, C_{p}, are provided in
a) Sentences (2) to (5의), and
b) Article 4.1.7.6. for certain shapes of low buildings.
2) For Except as provided in Sentence (6), for the design of balcony guards, the internal pressure coefficient, C_{pi}, shall be taken as zero and the value of C_{p} shall be taken as ± 0.9, except that, within a distance equal to the larger of 0.1 W and 0.1 D from a building corner, C_{p} hall be taken as ± 1.2.
3) Where the top of the balcony guard is 2.0 m or less below the roof surface, the values of C_{p} shall be taken as equal to those determined for parapets in Sentences (7) and (8).
4) To determine the contribution from parapets to the wind loads on the main structural system, he values of C_{p} shall be taken as
b) on the inner face of the windward parapet, equal to that on the upwind edge of a roof surface at the level of the top of the parapet, and
c) on the inner faces of the other parapets, zero.
5) For the structural design of parapets themselves, the values of C_{p} shall be taken as equal to hose specified in Sentence (7) excent that the value of C_{p} on the inner face of the leeward parapet shall be taken as equal to that on the outer face of the windward parapet
6) For the design of cladding on parapets, the values of C_{p} shall be taken as
a) on the outer vertical surfaces, equal to those on the cladding on the walls below, and b) on the inner and top surfaces, equal to those on the cladding of a roof surface at the evel of the top of the parapet.

4.1.7.6. External Pressure Coefficients for Low Buildings

2) For the design of the main structural system of the building, which is affected by wind pressures on more than one surface as shown in Figure 4.1.7.6.-A, the values of $G_{p} C_{g} C_{p}$ are provided in Figure-Table 4.1.7.6.-A.

Figure 4.1.7.6.-A

External peak values of CpCg for primary Primary structural actions arising from wind load acting simultaneously on all surfaces of low buildings ($\mathrm{H} \leq 20 \mathrm{~m}$)

Forming Part of Sentence 4.1.7.6.(2) and Table 4.1.7.6.

A, but not less than 4% of the least horizontal dimension or 1 m .
(8) For $\mathrm{B} / \mathrm{H}>5$ in Load Case A, the listed negative coefficients on surfaces 2 and 2 E should only be applied on an area whose width is 2.5 H measured from the windward eave. The pressures on the remainder of the windward roof should be reduced to the pressures for the leeward roof.

H, but not less than 4% of the least horizontal dimension or 1 m .
(86)For B/H >5 in Load Case A, (6) the listed negative coefficients on listed for surfaces 2 and 2 E in Table 4.1.7.6. should only be applied on an area whose width is 2.5 H measured from the windward eave. The pressures on the remainder of the windward roof should be reduced to the pressures for the leeward roof.

Table 4.1.7.6.
External Peak Values of $\mathrm{C}_{9} \mathrm{C}_{\mathrm{p}}$ in Figure 4.176 . A
Forming Part of Sentence 4.1.7.6.(2)

$\begin{aligned} & \text { Load } \\ & \hline \text { Case } \end{aligned}$	Roof Slope	External Peak Values of $\mathrm{C}_{9} \mathrm{C}^{(11)(2)}$											
		Building Surfaces											
		$\underline{1}$	1E	$\underline{2}$	2E	$\underline{3}$	3E	4	4E	5	5E	$\underline{6}$	$\frac{6}{E}$
A	0° to 5°	0.75	1.15	-1.3	-2.0	-0.7	-1.0	-0.55	-0.8	-	-	-	
	20°	1.0	1.5	-1.3	-2.0	-0.9	-1.3	-0.8	-1.2	-	-	-	-
	33° to 45°	1.05	1.3	0.4	0.5	-0.8	-1.0	-0.7	-0.9	$=$	$=$	$=$	
	90°	$\underline{1.05}$	1.3	1.05	1.3	-0.7	-0.9	-0.7	-0.9	=	$=$	-	
B	$\underline{0^{\circ} \text { to } 90^{\circ}}$	-0.85	-0.9	-1.3	-2.0	-0.7	-1.0	$\underline{-0.85}$	-0.9	0.75	1.15	-0.55	

Notes to Table 4.1.7.6.:

1) For values of roof slope not shown, the coefficient $\mathrm{C}_{0} \mathrm{C}_{p}$ can be interpolated linearly. 2) Positive coefficients denote forces toward the surface, whereas negative coefficient denote forces away from the surface.
2) The wind loads on balcony quards on low buildings shall be as specified in Sentences 4.1.7.5.(5) and (6).
3) The wind loads on parapets on low buildings shall be as specified in Sentences 4.1.7.5.(7) to (9).

4.1.7.7. Internal Pressure Coefficient

1) The internal pressure coefficient, $\mathrm{C}_{\mathrm{p} \text { i, }}$ for buildings shall be as prescribed in Table 4.1.7.7
2) The internal pressure coefficient, $C_{p i,}$ for cladding on parapets shall be -0.70 to +0.70 . (See Note A-4.1.7.7.(2).)

4.1.7.8. Dynamic Procedure

4) For the design of the main structural system, Cg shall be calculated as follows:

$\mathrm{F}=$ gust energy ratio calculated as $\frac{\mathrm{x}_{0}^{2}}{\left(1+\mathrm{x}_{0}^{2}\right)^{4 / 3}}$, where $\mathrm{x}_{0}=\left(1220 \mathrm{f}_{\mathrm{nO}} / V_{\mathrm{H}}\right)$, and
$B=$
where
$\mathrm{F}_{n \mathrm{D}}=\ldots$
$\mathrm{F}_{\mathrm{A}}=$ lowest natural frequency of the building, in Hz , as defined in Sentences 4.1.7.2.(2) and (3),
where
$\overline{\mathrm{V}}=$ reference wind speed at a height of 10 m , in m / s, calculated as $\sqrt{\frac{2-\mathrm{H}_{\mathrm{w}}-\mathrm{q}}{\rho}}$,
where
where
$\overline{\mathrm{V}}=$ reference wind speed at a height of 10 m , in m / s, calculated as $\sqrt{\frac{2 \cdot \mathrm{I}_{\mathrm{w}} \cdot \mathrm{q}}{\rho}}$
where

PART 4 - CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	Comments
Iw = importance factor,	Iw = importance factor for wind load, as provided in Table 4.1.7.3.,	
4.1.7.9. Full and Partial Wind Loading 1) Except where the wind loads are derived from the combined $\mathrm{C}_{\mathrm{p}} \mathrm{C}_{\mathrm{g}}$ values determined in accordance with Article 4.1.7.6., buildings and structural members shall be capable of withstanding the effects of the following loads: a) the full wind loads acting along each of the 2 principal horizontal axes considered separately, b) the wind loads described in Clause (a) but with 100% of the load removed from any one portion of the area, c) the wind loads described in Clause (a) but with both axes considered simultaneously at 75% of their full value, and d) the wind loads described in Clause (c) but with 50% of these loads removed from any portion of the area. (See Note A-4.1.7.9.(1).)	4.1.7.9. Full and Partial Wind Loading 1) Except where the wind loads are derived from the combined $G_{p} C_{g} C_{p}$ values determined in accordance with Article 4.1.7.6., buildings and structural members shall be capable of withstanding the effects of the following loads: a) the full wind loads acting along each of the 2 principal horizontal axes considered separately, b) 75% of the wind loads described in Clause (a) but with 100% of the load removed from any one portion of the area offset from the central geometric axis of the building by 15% of its width normal to the direction of the force to produce the worst load effect, c) 75% of the wind loads described in Clause (a) but with both axes considered simultaneously-at 75% of their full value, and d) 56% of the wind loads described in Clause (ca) but with 50% of these loads removed from any portion of the area both axes considered simultaneously and offset from the central geometric axis of the building by 15% of its width normal to the direction of the force. (See Note A-4.1.7.9.(1).)	
N/A	4.1.7.12. Attached Canopies on Low Buildings with a Height $\mathrm{H} \leq 20 \mathrm{~m}$ (See Note A-4.1.7.12.) 1) For the purposes of this Article, "attached canopy" shall mean a horizontal canopy with a maximum slope of 2% that is attached to a building wall at any height, h_{c}, above ground level. 2) The specified external wind pressure, p, and the specified net external wind pressure, $\mathrm{p}_{\text {net, }}$, for attached canopies on exterior walls of low buildings with a height $\mathrm{H} \leq 20 \mathrm{~m}$ shall be determined as follows: where $\mathrm{p}=$ specified external wind pressure acting statically and in a direction normal to the upper or lower surface of the canopy, considered positive when acting towards the surface and negative when acting away from the surface, pnet $=\frac{\text { specified net external wind pressure acting statically on the canopy, considered }}{\text { sper }}$ positive when acting in a downward direction and negative when acting in an upward direction, Iw, $\mathrm{q}, \mathrm{C}_{\mathrm{e}}, \mathrm{C}_{\mathrm{t}}=$ as defined in Sentence 4.1.7.3.(1), $\mathrm{C}_{9} \mathrm{C}_{\mathrm{p}}=$ gust pressure coefficient on the upper or lower surface of the canopy, as given in Figure 4.1.7.12.-A, and $\left(\mathrm{C}_{9} \mathrm{C}_{\mathrm{p}}\right)_{\text {net }}=$ net gust pressure coefficient on the canopy, considering simultaneous contributions from the upper and lower surfaces of the canopy, as given in Figure 4.1.7.12.-B. Figure 4.1.7.12.-A Gust pressure coefficients on the upper and lower surfaces of attached canopies with no gap between the canopy and the building Forming Part of Sentence 4.1.7.12.(2)	

NBC(AE) 2019

PART 4-CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	Comments
	Notes to Figure 4.1.7.12.-B: (1) The coefficients apply for any roof slope, α. (2) The reference height, h, is the mid-height of the roof or 6 m , whichever is greater. (3) Positive ($\left.\mathrm{C}_{9} \mathrm{C}_{\mathrm{p}}\right)_{\text {net }}$ values denote net forces acting in a downward direction on the canopy, whereas negative ($\mathrm{C}_{9} \mathrm{C}_{\mathrm{p}}$) net values denote net forces acting in an upward direction on the canopy. The canopy must be designed to resist both the positive and negative net forces	
N/A	4.1.7.13. Roof-Mounted Solar Panels on Buildings of Any Height (See Note A-4.1.7.13.) 1) Where solar panels are installed on a roof, the roof wind loads shall account for the wind loads on the solar panels, as determined in accordance with Sentences (2) to (7), or shall be determined in the same way as for the roof without solar panels, whichever approach results in the most critical effect. 2) For an array of solar panels where the panels are installed close and parallel to the roof surface with their upper surface not more than 250 mm above the roof surface and with gaps around the panels of not less than 6 mm , the net positive or negative pressure difference between the upper and lower surfaces of a panel or the array shall be calculated as follows: where Iw, $q, C_{e}, C_{t}, C_{g}, C_{p}=$ as defined in Sentence 4.1.7.3.(1), determined in the same manner as for the roof cladding, $E=$ edge factor, as provided in Sentence (4), and $\mathrm{Y}_{\mathrm{a}}=$ pressure equalization factor, as provided in Sentence (3). 3) The pressure equalization factor, v_{a}, in Sentence (2) shall be a) for a panel or an array where the panel chord length, L_{p}, is greater than 2 m or for a panel or an array that is within a distance of $2 h_{2}$ from the roof edge or ridge, where h_{2}	

for other panels or arrays, mind panel or array over which the wind load is being calculated.

Figure 4.1.7.13.-A

Pressure equalization factor, $\begin{aligned} & \text { Figure for solar panels } \\ & \text { an }\end{aligned}$ buildings of any height Forming Part of Clause 4.1.7.13.(3)(b)

4) The edge factor, E, in Sentence (2) shall be taken as
a) 1.5 within a distance of $1.5 \mathrm{~L}_{\mathrm{p}}$ from an exposed edge of the array of solar panels, as $\frac{\text { defined in Sentence (5), and }}{10}$
b) 1.0 elsewhere.
5) For the purposes of Clause (4)(a), an exposed edge of the array of solar panels shall be onsidered to occur
a) where the distance to the next row of panels or the distance across a gap in the sam row of panels exceeds $4 h_{2}$ or 1.2 m , whichever is greater, or
b) where the distance to the roof edge exceeds $4 \mathrm{~h}_{2}$ or 1.2 m , whichever is greater, and exceeds 0.5h, where h is the reference height of the roof
6) For an array of solar panels mounted on a roof with a slope, α, less than or equal to 7°, where the panels are tilted relative to the roof surface, have a chord length, Lo, not greater than 2 m , and are installed such that the height of their lowest point above the roof surface, h_{1}, is not greater than 0.6 m , the height of their highest point above the roof surface, h_{2}, is not greater han 1.2 m , and their tilt angle relative to the roof surface, ω, is not greater than 35 , or where mm above the roof surface and with gaps not less than 6 mm between the panels the net positive or negative pressure difference between the upper and the lower surfaces of a panel or the array shall be calculated as follows:

$$
\left.\mathrm{p}_{\text {net }}=\mathrm{lwq}_{\mathrm{q}} \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}}\left(\mathrm{C}_{9} \mathrm{C}_{\mathrm{p}}\right)\right)_{\text {net }}
$$

where
lw, $\mathrm{a}, \mathrm{C}_{\mathrm{e}}, \mathrm{C}_{\mathrm{t}}=$ as defined in Sentence 4.1.7.3.(1), determined in the same manner as for the roof cladding, and
$\left.C_{0} C_{p}\right)_{\text {net }}=$ net gust pressure coefficient, as provided in Sentence (7).
7) The net gust pressure coefficient, $\left(C_{0} C_{p}\right)$ net, in Sentence (6) shall be calculated as follows:
\qquad
\qquad

PART 4 - CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	Comments
	where $\mathrm{y}_{\mathrm{o}}=$ parapet factor, determined as the lesser of 1.2 and $\left(0.9+\mathrm{h}_{\mathrm{o}} \mathrm{h}\right)$. $\mathrm{Y}_{\mathrm{c}}=$ chord factor, determined as the greater of $\left(0.6+0.2 \mathrm{~L}_{\mathrm{p}}\right)$ and 0.8 , $\mathrm{E}=$ as defined in Sentence (2), and $\left(\mathrm{C}_{9} \mathrm{C}_{\mathrm{P}}\right)_{n}=$ normalized gust pressure coefficient, determined from Figure 4.1.7.13.-B based on ω and AN^{N}, where $h_{01}=$ height of the parapet above the roof surface, in m, $h=$ reference height of the root, in m. $L_{p}=$ panel chord length, in m, $\omega=$ panel tilt angle relative to the roof surface, and $A_{N}=$ normalized panel or array area, calculated as $A_{N}=\frac{1000 \mathrm{~A}}{\max \left(L_{2}^{2}, 25\right)}$ where A = panel or array area over which the wind load is being calculated, in m^{2}, and $L_{b}=$ normalized building length, in m, determined as the lesser of $\left(0.4 \sqrt{h W_{1}}\right)$, h and W_{s}, where $W_{L}=$ longest horizontal dimension of the building, in m, and $\mathrm{W}_{\mathrm{s}}=$ smallest horizontal dimension of the building, in m . Fiqure 4.1.7.13.-B Normalized gust pressure coefficient, $\left(\mathcal{C}_{0} \mathrm{C}_{\mathrm{p}}\right)_{n}$, for solar panels or arrays mounted on low-sloped roofs of buildings of any height Forming Part of Sentence 4.1.7.13.(7)	

PART 4 - CODE UPDATE INFORMATION		
NBC(AE) 2019	NBC(AE) 2023	Comments
	 Notes to Figure 4.1.7.13.-B: (1) $\mathrm{H}=$ height of the building. (2) $\mathrm{h}=$ reference height of the roof. (3) $\left(\mathrm{C}_{9} \mathrm{C}_{p}\right)_{n}$ values are for both positive and negative values. (4) For panels with $5^{\circ}<\omega<15^{\circ}$, linear interpolation is permitted.	
4.1.8.1. Analysis 2) Where $I_{E} F_{s} S_{a}(0.2)$ and $I_{E} F_{S} S_{a}(2.0)$ are less than 0.16 and 0.03 respectively, the deflections and specified loading due to earthquake motions are permitted to be determined in accordance with Sentences (3) to (15), where a) I_{E} is the earthquake importance factor and has a value of $0.8,1.0,1.3$ and 1.5 for buildings of Low, Normal, High and Post-Disaster importance respectively, b) $\quad \mathrm{F}_{\mathrm{s}}$ is the site coefficient based on the average \bar{N}_{60} or \bar{s}_{u}, as defined in. Article 4.1.8.2., for the top 30 m of soil below the footings, pile-caps, or mat foundations and has a value of i) 1.0 for rock sites or when $\overline{\mathrm{N}}_{60}>50$ or $\mathrm{Su}>100 \mathrm{kPa}$,	4.1.8.1. Analysis 2) Where $I_{E} F_{s} S_{a}\left(0.2, X_{450}\right)$ and $I_{E} F_{s} S_{a}\left(2.0, X_{450}\right)$ are less than 0.16 and 0.03 respectively, the deflections and specified loading due to earthquake motions are permitted to be determined in accordance with Sentences (3) to (15), where a) I_{E} is the earthquake importance factor and has a value of $0.8,1.0,1.3$ and 1.5 for buildings of-in the Low, Normal, High and Post- Disaster ilmportance Categories respectively, b) F_{s} is the site coefficient based on the average \bar{N}_{60} or $s_{\psi} \bar{S}_{u}$, as defined in Article 4.1.8.2., for the top 30 m of soil below the footings, pile-pile caps, or mat foundations and has a value of i) 1.0 for rock sites or when $\overline{\mathrm{N}}_{60}>50$ or $\mathrm{S}_{\mathrm{t}}{\overline{\underline{S^{U}}}}>100 \mathrm{kPa}$,	

iii) 2.8 for all other cases, and
c) $\mathrm{S}_{\mathrm{a}}(\mathrm{T})$ is the 5%-damped spectral response acceleration value for period T , determined in accordance with Subsection 1.1.3.
3) The structure shall have a clearly defined
a) Seismic Force Resisting System (SFRS) to resist the earthquake loads and their
load path (or
load path (or paths) that will transfer the inertial forces generated by the earthquake to the foundations and supporting ground.
5) The height above grade of SFRS designed in accordance with CSA S136, "North American Specification for the Design of Cold-Formed Steel Structural Members (using the Appendix B provisions applicable to Canada)," shall be less than 15 m .
7) The minimum lateral earthquake design force, V_{s}, at the base of the structure in the direction under consideration shall be calculated as follows

$$
\left.\mathrm{V}_{\mathrm{s}}=\mathrm{F}_{\mathrm{s}} \mathrm{~S}_{\mathrm{a}}\left(\mathrm{~T}_{\mathrm{s}}\right)\right)_{\mathrm{E}} \mathrm{~W}_{\mathrm{t}} / \mathrm{R}_{\mathrm{s}}
$$

where
$S_{a}\left(T_{s}\right)=$ value of S_{a} at T_{s} determined by linear interpolation between the value of S_{a} at 0.2 s 0.5 s , and 1.0 s , and
$=\mathrm{S}_{\mathrm{a}}(0.2)$ for $\mathrm{T}_{\mathrm{s}} \leq 0.2 \mathrm{~s}$,
$W_{t}=$ sum of W_{i} over the height of the building, where W_{i} is defined in Article 4.1.8.2., and $\mathrm{R}_{\mathrm{s}}=$ where
4.1.8.2 $T_{s}=$ fundamental lateral period of vibration of the building, as defined in Article
4.1.8.2., $=0.085\left(h_{n}\right)^{3 / 4}$ for steel moment frames,
$=\quad 0.085\left(h_{n}\right)$ 年
$=\quad 0.075\left(h_{n}\right)^{3 / 4}$ for concrete moment frames,
0.1 N for other moment frames,
$=0.025 h_{n}$ for braced ralles,
$=\quad 0.05\left(h_{n}\right)^{3 / 4}$ for shear walls and other structures
where $h_{n}=$ height above the base, in m, as defined in Article 4.1.8.2., except that V_{s} shall not be less than $F_{s} S_{a}(1.0) \mathrm{IEW}_{t} \mathrm{R}_{\mathrm{s}}$ and, in cases where $\mathrm{R}_{\mathrm{s}}=1.5, \mathrm{~V}_{\mathrm{s}}$ need not be greater than $\mathrm{F}_{\mathrm{s}} \mathrm{S}_{\mathrm{a}}(0.5) \mathrm{IE}_{\mathrm{E}} / \mathrm{R}_{\mathrm{s}}$.
8) The total lateral earthquake design force, V_{s}, shall be distributed over the height of the building in accordance with the following formula:

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{V}_{\mathrm{s}} \mathrm{~W}_{\mathrm{x}} \mathrm{~h}_{\mathrm{x}} /\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~W}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}}\right)
$$

where
$\mathrm{F}_{\mathrm{x}}=$ force applied through the centre of mass at level x ,
W_{x}, W_{i} portion of W that is located at or is assigned to level x or i respectively, and
$h_{x}, h_{i}=$ height, in m, above the base of level x and level i as per Article 4.1.8.2.
13) Except as provided in Sentence (14), where cantilever parapet walls, other cantilever walls exterior ornamentation and appendages, towers, chimneys or penthouses are connected to or form part of a building, they shall be designed, along with their connections, for a lateral force,
ii) 1.6 when $15 \leq \overline{\mathrm{N}}_{60} \leq 50$ or $50 \mathrm{kPa} \leq \mathrm{s}_{4} \overline{\mathrm{~S}}_{\mathrm{u}} \leq 100 \mathrm{kPa}$, and (ii) 2.8 for all other cases, and
c) $\mathrm{S}_{a}\left(\mathrm{~T}, \mathrm{X}_{450}\right)$ is the 5%-damped spectral response-acceleration value for at period $\mathrm{T}_{\bar{T}}$, for site designation X_{450}, as defined in Article 4.1.8.2., determined in accordance with Subsection 1.1.3. and corresponding to a 2% probability of exceedance in 50 years.
3) The structure shall have a clearly defined
a) Sseismic Fforce Rresisting Ssystem (SFRS) to resist the earthquake loads and their effects, and
b) load path (or paths) that will transfer the inertial forces generated by the in an earthquake to the foundations and supporting ground.
5) The height above grade of an SFRS designed in accordance with CSA S136, "North American Specification for the Design of Cold-Formed Steel Structural Members (using the Appendix B provisions applicable to Canada), shall be less than 15 m .
7) The-minimum-specified lateral earthquake design-force, V_{s}, at the base of the structure in 7he direction under consideration shall be calculated as follows:

$$
V_{s}=F_{s} S_{a}\left(T_{s}, X_{450}\right) l_{E} W_{t} / R_{s}
$$

where
$\mathrm{S}_{a}\left(\mathrm{~T}_{s,}, X_{450}\right)=$ value of $\mathrm{S}_{\mathrm{a}}-\mathrm{at}^{(}\left(\mathrm{T}_{s, 2}, \mathrm{X}_{450}\right)$ determined by linear interpolation between the value values of S_{a} at $0.2 \mathrm{~s}, 0.5 \mathrm{~s}$, and 1.0 s , and $\left(0.2, \mathrm{X}_{450}\right), \mathrm{S}_{\mathrm{a}}\left(0.5, \mathrm{X}_{450}\right)$ and $\mathrm{S}_{\mathrm{a}}\left(1.0, \mathrm{X}_{450}\right)$ $=\mathrm{Sa}_{\mathrm{a}}\left(0.2, X_{450}\right)$ for $\mathrm{T}_{\mathrm{s}} \leq 0.2 \mathrm{~s}$, and
$W_{\mathrm{t}}=$ sum of W_{i} over the height of the building, where W_{i} is defined in Article 4.1.8.2., and $\mathrm{R}_{\mathrm{s}}=.$.
where
4.1.8.2., $\mathrm{T}_{\mathrm{s}}=\quad$ fundamental lateral period of vibration of the building, as defined in Article
$=\quad 0.085\left(h_{n}\right)^{3 / 4}$ for steel moment frames,
$=0.075\left(\mathrm{~h}_{\mathrm{n}}\right)^{3 / 4}$ for concrete moment frames,
$=\quad 0.1-\mathrm{N} \mathrm{h}_{\mathrm{n}}$ for braced frames, and
$=\quad 0.05\left(h_{n}\right)^{3 / 4}$ for shear walls and other structures,
$h_{n}=$ height, in m, above the base, in m, to level n, as defined in Article 4.1.8.2., except that V_{s} shall not be less than $F_{s} S_{2}(1.0) \mid E W / \notin R_{s}$ and, in cases where $R_{s}=1.5, V_{s}$ need not be greater than $F_{s} S_{a}(0.5) \mid E W_{d} \cdot R_{s}$.and
$\mathrm{N}=$ total number of storeys above exterior grade to level n , as defined in Article 4.1.8.2. except that, in cases where $R_{s}=1.5, V_{s}$ need not be greater than $F_{s} S_{a}\left(0.5, X_{450}\right) \mid E W / R_{s}$.
8) The total-specified lateral earthquake design force, V_{s}, shall be distributed over the height of the building in accordance with the following formula:

$$
F_{x}=V_{s} W_{x} h_{x} /\left(\sum_{i=1}^{n} W_{i} h_{i}\right)
$$

where
$\mathrm{F}_{\mathrm{x}}=$ force applied through the centre of mass at level x ,
$W_{x}, W_{i} \equiv$ portion of W that is located at or is assigned to level x or i respectively, and
$h_{x}, h_{i}=$ height, in m, above the base of to level x and level or i respectively, as per defined in Article 4.1.8.2
13) Except as provided in Sentence (14), where cantilever parapet walls, other cantilever walls, exterior ornamentation and appendages, towers, chimneys or penthouses are connected to or orm part of a buiding they shall be designed along with their connections, for a lateral force.

NBC(AE) 2019

Vsp, distributed according to the distribution of mass of the element and acting in the lateral direction that results in the most critical loading for design using the following equation

$$
\mathrm{V}_{\mathrm{sp}}=0.1 \mathrm{~F}_{\mathrm{s}} \mathrm{E} \mathrm{~W}_{\mathrm{p}}
$$

here

$\mathrm{W}_{\mathrm{p}}=$ weight of a portion of a structure as defined in Article 4.1.8.2

4.18.2. Notation

1) In this Subsection
$A_{r}=$ response amplification factor to account for type of attachment of
mechanical/electrical equipment, as defined in Sentence 4.1.8.18.(1),
$A_{x}=$ amplification factor at level x to account for variation of response of mechanical/electrical equipment with elevation within the building, as defined in Sentence 4.1.8.18.(1),
$\begin{aligned} \mathrm{B}_{\mathrm{x}} & =\ldots \\ \mathrm{B} & =\ldots\end{aligned}$
$C_{p}=$ seismic coefficient for mechanical/electrical equipment, as defined in Sentence 4.1.8.18.(1)
$\mathrm{D}_{\mathrm{nx}}=\ldots$
$\mathrm{F}_{\mathrm{a}}=$ site coefficient for application in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7),
F(PGA) $=$ site coefficient for PGA, as defined in Sentence 4.1.8.4.(5),
$F(P G V)=$ site coefficient for PGV, as defined in Sentence 4.1.8.4.(5),
$\mathrm{F}_{\mathrm{s}}=$
$F(T)=$ site coefficient for spectral acceleration, as defined in Sentence 4.1.8.4.(5),
$\mathrm{F}_{\mathrm{v}}=$ site coefficient for application in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7),
$\mathrm{F}_{\mathrm{x}}=$
$F_{x}=\ldots, h_{i}$, the height above the base $(i=0)$ to level i, n, or x respectively, where the base
of the structure is the level at which horizontal earthquake motions are considered to be imparted to the structure
$h_{s}=$ interstorey height $\left(h_{i}-h_{i-1}\right)$,
$\mathrm{I}_{\mathrm{E}}=$
$M_{v}=$ factor to account for higher mode effect on base shear, as defined in Sentence 4.1.8.11.(6),
$\overline{\mathrm{N}}_{60}=$ Average Standard Penetration Resistance for the top 30 m , corrected to a rod energy efficiency of 60% of the theoretical maximum,
PGA = Peak Ground Acceleration, expressed as a ratio to gravitational acceleration, as defined in Sentence 4.1.8.4.(1),
$P G A_{\text {ref }}=$ reference $P G A$ for determining $F(T), F(P G A)$ and $F(P G V)$, as defined in Sentence 4.1.8.4.(4),

PGV $=$ Peak Ground Velocity, in m / s, as defined in Sentence 4.1.8.4.(1),
PI = plasticity index for clays
$R_{d}=$ ductility-related force modification factor reflecting the capability of a structure to dissipate energy through reversed cyclic inelastic behaviour, as given in Article 4.1.8.9.,
$\mathrm{R}_{\mathrm{o}}=$
$\mathrm{R}_{\mathrm{s}}=$
$S_{\text {}}=$

$$
\mathrm{V}_{\mathrm{sp}}=0.1 \underline{\mathrm{~S}_{\mathrm{a}}\left(0.2, \mathrm{X}_{450}\right)} \mathrm{F}_{\mathrm{s}} \mathrm{E} \mathrm{~W}_{\mathrm{p}}
$$

where
$\mathrm{W}_{\mathrm{p}}=$ weight of a portion of a structure as defined in Article 4.1.8.2

4.1.8.2. Notation

1) In this Subsection

$A_{r}=$ response element or component force amplification factor to account for type of attachment-of mechanical/electrical equipment, as defined in Sentence 4.1.8.18.(1)
$A_{x}=$ amplification height factor at level x to account for variation of response of mechanicallelectrical equipment an element or component with elevation within the building, as defined in Sentence 4.1.8.18.(1)
$\mathrm{B}_{\mathrm{x}}=\ldots$
$\begin{aligned} B & =\ldots \\ C_{p} & =\text { seismic coefficient for-mechanical/electrical equipment an element or component, as }\end{aligned}$ defined in Sentence 4.1.8.18.(1),
$\begin{aligned} \mathrm{D}_{\mathrm{nx}} & =. . \\ \mathrm{e}_{\mathrm{x}} & =\ldots\end{aligned}$
$\mathrm{F}_{\mathrm{a}}=$ acceleration-based site coefficient for application in standards referenced in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7)
F(PGA) = site coefficient for PGA, as defined in Sentence 4.1.8.4.(5),
$F(P G V)=$ site coefficient for PGV, as defined in Sentence 4.1.8.4.(5)
$\mathrm{F}_{\mathrm{s}}=.$.
$F(T)=$ site coefficient for spectral acceleration, as defined in Sentence 4.1.8.4.(5)
$\mathrm{F}_{\mathrm{t}}=.$.
$F_{v}=$ velocity-based site coefficient for application in standards referenced in Subsection 4.1.8., as defined in Sentence 4.1.8.4.(7)
$\mathrm{F}_{\mathrm{x}}=$..
$h_{i}, h_{n}, \dot{h}_{x}=$ the-height, in m, above the base $(i=0)$ to level i, n, or x respectively, where the base of the structure is the level at which horizontal earthquake motions ar considered to be imparted to the structure
$h_{s}=$ interstoreystorey height $\left(h_{i}-h_{i-1}\right)$,
$\mathrm{I}_{\mathrm{E}}=\ldots$
$\mathrm{M}_{\mathrm{v}}=$ factor to account for higher mode effect effects on base shear, as defined in Sentence 4.1.8.11.(6),
$\mathrm{F}_{60}=$ Aaverage Sstandard Ppenetration Rresistance for , in blows per 0.3 m , in the top 30 m of soil, corrected to a rod energy efficiency of 60% of the theoretical maximum
$\mathrm{PGA}(\mathrm{X})=$ Ppeak G ground Aacceleration, expressed as a ratio to gravitational acceleration,
for site designation X, as defined in Sentence 4.1.8.4.(1),
PGA ref = reference PGA for determining $F(T), F(P G A)$ and $F(P G V)$, as defined in sentence 4.1.8.4.(4)
$\operatorname{PGV}(X)=$ Ppeak $G g r o u n d$ velocity, in m / s, for site designation X, as defined in Sentence 4.1.8.4. (1),
$\mathrm{PI}=$ plasticity index for-clays so
$\mathrm{R}_{\mathrm{d}}=$ ductility-related force modification factor reflecting the capability of a structure to dissipate energy through reversed cyclic inelastic behaviour, as given-defined in Article 4.1.8.9.,
$\mathrm{R}_{\mathrm{o}}=$.
$\mathrm{R}_{\mathrm{p}}=$ element or component response modification factor, as defined in Sentence 4.1.8.18.(1),
$\mathrm{R}_{\mathrm{s}}=$. \qquad $\mathrm{S}_{\mathrm{a}}(\mathrm{T}, \mathrm{X})=5 \%$-damped spectral response-acceleration, expressed as a ratio to gravitational acceleration, at period T for site designation X, as defined in Sentence 4.1.8.4.(1),

NBC(AE) 2019

$\mathrm{S}(\mathrm{T})=$ design spectral response acceleration, expressed as a ratio to gravitational acceleration, for a period of T , as defined in Sentence 4.1.8.4.(9),
$\mathrm{S}_{\mathrm{a}}(\mathrm{T})=5 \%$ damped spectral response acceleration, expressed as a ratio to gravitationa acceleration, for a period of T, as defined in Sentence 4.1.8.4.(1),
SFRS $=$ Seismic Force Resisting System(s) is that part of the structural system that has been considered in the design to provide the required resistance to the earthquake forces and effects defined in Subsection 4.18
$=$ average undrained shear strength in the top 30 m of soil,
$\mathrm{T}=$ period in seconds,
$\mathrm{T}_{\mathrm{a}}=$
$\mathrm{Ts}=$ fundamental lateral period of vibration of the building or structure, in s , in the direction under consideration, as defined in Sentence 4.1.8.1.(7),
$T x=$ floor torque at level x, as defined in Sentence 4.1.8.11.(11),
DD $=$ Total Design Displacement of any point in a seismically isolated structure, within or above the isolation system, obtained by calculating the mean + (IE \times the standard deviation) of the peak horizontal displacements from all sets of ground motion histories analyzed, but not less than $V_{\mathbb{E}} \times$ the mean, where the peak horizonta displacement is based on the vector sum of the two orthogonal horizontal displacements considered for each time step,
$\mathrm{V}=$ lateral earthquake design force at the base of the structure, as determined by Article 4.1.8.11.,

ing force at the base of the structure, as

 determined by Article 4.1.8.12$\mathrm{V}_{\mathrm{e}}=$ lateral earthquake elastic force at the base of the structure, as determined by Article 4.1.8.12.,
$V_{\text {ed }}=$ lateral earthquake design elastic force at the base of the structure, as determined by Article 4.1.8.12.
$\mathrm{V}_{\mathrm{p}}=$ lateral force on a part of the structure, as determined by Article 4.1.8.18.
$\mathrm{V}_{\mathrm{s}}=$ lateral earthquake design force at the base of the structure, as determined by Sentence 4.1.8.1.(7), for application in Article 4.1.8.1.,
$\overline{\mathrm{V}}_{530}=$ average shear wave velocity in the top 30 m of soil or rock
defined in Sentence 41.41 (3) need defined in Sentence 4.1.4.1.(3) need not exceed 0.5 kPa , plus 25% of the design for storage, except that storage garages need not be considered storage areas, and the full contents of any tanks (see Note A-4.1.8.2.(1)),
$\begin{aligned} & \mathrm{W}_{\mathrm{i}}, \mathrm{W}_{\mathrm{x}}= \\ & \mathrm{W}_{\mathrm{p}}=\end{aligned}$
$\mathrm{W}_{\mathrm{t}}=$ sum of Wi over the height of the building, for application in Sentence 4.1.8.1.(7),

$\delta_{\text {ave }}=$
 $\delta_{\text {max }}=$..

4.1.8.4. Site Properties

1) The peak ground acceleration (PGA), peak ground velocity (PGV), and the 5\% damped spectral response acceleration values, $\mathrm{Sa}(\mathrm{T})$, for the reference ground conditions (Site Class C in Table 4.1.8.4.-A) for periods T of $0.2 \mathrm{~s}, 0.5 \mathrm{~s}, 1.0 \mathrm{~s}, 2.0 \mathrm{~s}, 5.0 \mathrm{~s}$ and 10.0 s shall be determined in accordance with Subsection 1.1.3. and are based on a 2% probability of exceedance in 50 years
design spectral acceleration values at periods of 0.2 s and 1.0 s , as defined in Article
SFRS = Sseismic Fforce Rresisting Ssystem(s) is that part of the structural system that has been considered in the design to provide the required resistance to the earthquake forces and effects defined in Subsection 4.1.8.,
$\mathrm{S}_{\mathrm{p}}=$
$\begin{aligned} \mathrm{S}_{\mathrm{p}} & =\ldots \\ \mathrm{S}(\mathrm{T}) & =\text { design spectral response-acceleration, expressed as a ratio to gravitational }\end{aligned}$ acceleration, for a-at period $\oplus \mp T$, as defined in Sentence 4.1.8.4.(96),
$s \bar{s}_{u}=$ average undrained shear strength, in kPa , in the top 30 m of soil,
$\mathrm{T}=$ period $_{2}$ in seconds-s,
TDD = Ttotal Ddesign Ddisplacement of any point in a seismically isolated structure, within or above the isolation system, obtained by calculating the mean + (IE \times the standard deviation) of the peak horizontal displacements from all sets of ground motion time histories analyzed, but not less than $V_{\mathrm{E}} \times$ the mean, where the peak horizontal displacement is based on the vector sum of the two orthogonal horizontal displacements considered for each time step,
Ts = fundamental lateral period of vibration of the building or structure, in s , in the direction under consideration, as defined in Sentence 4.1.8.1.(7),
$\mathrm{T} x=$ floor torque at level x , as defined in Sentence 4.1.8.11.(11)
specified lateral earthquake design force at the base of the structure, as determined by-in Article 4.1.8.11.,
$\mathrm{V}_{\mathrm{d}}=$ specified lateral earthquake design-force at the base of the structure, as determined by-in Article 4.1.8.12.
lateral earthquake elastic force at the base of the structure, as determined by-in Article 4.1.8.12.,
$V_{\text {ed }}=\underline{\text { adjusted }}$ lateral earthquake designelastic force at the base of the structure, as determined by in Article 4.1.8.12.,
$V_{p}=$ specified lateral earthquake force on-a part of the structure an element or component, as determined byin Article 4.1.8.18.,
$\mathrm{V}_{\mathrm{s}}=$ specified lateral earthquake design force at the base of the structure, as determined by-in Sentence 4.1.8.1.(7), for application in Article 4.1.8.1.,
$\overline{\mathrm{V}} \underline{\mathrm{V}}_{\mathrm{s} 30}=$ average shear wave velocity, in m / s, in the top 30 m of soil or rock,
$\mathrm{W}=$ specified dead load, as defined in Article 4.1.4.1., except that the minimum partition the design-specified snow load specified as defined in Subsection 4 kPa, plus 25% of the storage load for areas used for storage, except that storage garages need not be considered storage areas, and the full contents of any tanks (see Note A-4.1.8.2.(1))
$\mathrm{W}_{\mathrm{i}}, \mathrm{W}_{\mathrm{x}}=\ldots$
$W_{\mathrm{p}}=\ldots$
$W_{1}=$ sum of Wi over the height of the butilding, for application in Sentence 4.1.8.1.(7), $X=$ site designation, either X_{v} or X_{S},
$X_{s}=$ site designation in terms of Site Class, where S is the Site Class determined in accordance with Sentence 4.1.8.4.(3),
$\mathrm{X}_{\mathrm{v}}=\frac{\text { site designation in terms of } \mathrm{V}_{\mathrm{s} 30} \text {, where } \mathrm{V} \text { is the } \mathrm{V}_{\mathrm{s} 30} \text { value calculated from in situ }}{\text { measurements of shear wave velocity }}$ $X_{450}=\frac{\text { measurements of shear wave velocity, }}{\text { site desianation } X_{v} \text { with } V_{s 30}=450 \mathrm{~m} / \mathrm{s}}$
ave $=$..

4.1.8.4. Site Properties

1) The For site designation X, as determined in accordance with Sentence (2) or (3), the peak ground acceleration $\left(\operatorname{PGA}(\underline{X})\right.$, the peak ground velocity ${ }_{1}(\operatorname{PGV} \underline{X})$, and the 5%-damped spectral response acceleration values, $\mathrm{S}_{a}\left(T_{2}, X\right)$, for the reference ground conditions (Site Class C in Table 4.1.8.4.-A) for), at periods T ($0.2 \mathrm{~s}, 0.5 \mathrm{~s}, 1.0 \mathrm{~s}, 2.0 \mathrm{~s}, 5.0 \mathrm{~s}$ and 10.0 s shall
a) except as provided in Sentence (4), be determined in accordance with Subsection 1.1.3., and are based on
b) except as provided in Article 4.1.8.23., correspond to a 2% probability of exceedance

Forming Part of Sentences 4.1.8.4.(4) and (5)
${ }^{* * *}$ Table 4.1.8.4.-D not shown ***

Table 4.1.8.4.-E

Values of $F(2.0)$ as a Function of Site Class and PGA ref Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4.1.8.4.-E not shown ***
Table 4.1.8.4.-F
Values of $\mathrm{F}(5.0)$ as a Function of Site Class and PGA ref Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4.1.8.4.-F not shown ***

Table 4.1.8.4.-G

Values of $\mathrm{F}\left(\mathbf{1 0 . 0}\right.$) as a Function of Site Class and PGA ${ }_{\text {ret }}$ Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4.1.8.4.-G not shown ***
Table 4.1.8.4.-H
Values of $F(P G A)$ as a Function of Site Class and PGA ret Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4.1.8.4.-H not shown ***

Table 4.1.8.4.-1

Values of $F(P G V)$ as a Function of Site Class and PGA ${ }_{\text {re }}$ Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4 1.8.4-I not shown ***

> Fable 4.1.8.4.E
> Values of $F(2.0)$ as a Function of Site Class and PGAref Forming Part of Sentences 4.1.8.4. (4) and (5)

*** Table 4.1.8.4-E Deleted ***
Fable 4.1.8.4.-F
Values of $F(5.0)$ as a Function of Site Class and PGA Forming Part of Sentences 1.1.8.4.(4) and (5)
*** Table 4.1.8.4.-F Deleted ***

Table 4.1.8.4.-G

Values of $F(10.0)$ as a Function of Site Class and PGAref Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4.1.8.4.-G Deleted ***

Fable 4.1.8.4.-H

Values of $F(P G A)$ as a Function of Site-Class and $P G A_{\text {ref }}$ Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4.1.8.4.-H Deleted ***
Table 4.1.8.4.-1
Values of $F($ PGV $)$ as a Function of Site Class and PGA ref Forming Part of Sentences 4.1.8.4.(4) and (5)
*** Table 4 1. 8.4-I Deleted ***
2) Except as provided in Sentence (3), the site designation referred to in Sentence (1) shall be determined using the average shear wave velocity, $\mathrm{V}_{\mathrm{s} 30}$, calculated from in situ measurements determined using the average shea
a) for the ground profiles described in Table 4.1.8.4.-A, the site designation shall be determined in accordance with the Table, and
b) for all other ground profiles, the site designation shall be X_{v}, where V is the value of \underline{V}_{530}.

(See Note A-4.1.8.4.(2) and (3).)

Table 4.1.8.4.-A
Exceptions for Site Designation Using V_{530} Calculated from In Situ Measurements Forming Part of Sentence 4.1.8.4 (2)

Ground Profile Characte	stics	
Average Shear Wave Velocity in Top 30 m , \underline{V}_{530}, Calculated from In Situ Measurements, in m / s	Additional Characteristics	Site Designation
$\mathrm{V}_{530}>760$	Ground profile contains more than 3 m of softer materials between rock and the underside of footing or mat foundations	$\underline{X_{760}}$
$\mathrm{V}_{530}>140$	Ground profile contains more than 3 m of soil with all the following characteristics: - plasticity index, $\mathrm{PI}>20$,	$\underline{\underline{X}}$

4.1.8.6. Structural Configuration

3) Except as required by Article 4.1.8.10., in cases where $\mathrm{I}_{\mathrm{E}} \mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{a}}(0.2)$ is equal to or greater than 0.35 , structures designated as irregular must satisfy the provisions referenced in Table 4.1.8.6.

Table 4.1.8.6.

Structural Irregularities(1)(2)
Forming Part of Sentence 4.1.8.6.(1)

Type	Irregularity Type and Definition	Notes
	Vertical Stiffness Irregularity Vertical stifness irregularity shall be considered to exist when the lateral stiffness of the SFRS in a storey is less than 70\% of the stiffness of any adjacent storey, or less than 80\% of the average stiffness of the three storeys above or below.	
\ldots	\ldots	${ }^{(3)(4)}$
7	\ldots	\ldots
8	\ldots	${ }^{(3)(4)(6)}$
9	Gravity-Induced Lateral Demand Irregularity Gravity-induced lateral demand irregularitl on the SFRS shall be considered to exist where the ratio, a, calculated in accordance with Sentence 4.1.8.10.(5), exceeds 0.1 for an SFRS with self-centering characteristics and 0.03 for other systems.	(3)(4)(7)

Notes to Table 4.1.8.6:

(5) See Article 4.1.8.15
(6) See Sentences 4.1.8.11.(10), (11) and 4.1.8.12.(4)
(7) See Article 4.1.8.8.

4.1.8.7. Methods of Analysis

1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structures that meet any of the following criteria:
a) in cases where $l_{E} F_{a} S_{a}(0.2)$ is less than 0.35,
b)
b) $\begin{aligned} & \text { b } \\ & \text { c) } \\ & \text { cuctures with structural irregularity, of Type 1, 2,3,4,5,6 or } 8 \text { as defined in Table }\end{aligned}$ 4186 that are less than 20 m in height and have a fundamental lateral period
2) The Seismic Category of a building shall be taken as the more severe of the categorie determined on the basis of $\mathrm{l}_{\mathrm{E}} \mathrm{S}(0.2)$ and $\mathrm{l}_{\mathrm{E}} \mathrm{S}(1.0)$, irrespective of the fundamental lateral period of the building, T_{a}.

4.1.8.6. Structural Configuration

3) Except as required by Article 4.1.8.10., in cases-where $t_{E} E_{2} S_{2}(0.2)$ is equal to or greater than 0.35-the Seismic Category is SC3 or SC4, structures designated as irregular must satisfy the provisions referenced in Table 4.1.8.6.

Notes to Table 4.1.8.6.:

(5) Increased stiffness in storeys below grade need not be considered in the determination of vertical stiffness irregularity
(56)See Article 4.1.8.15.
(67)See Sentences 4.1.8.11.(10) and (11), and 4.1.8.12.(4)
(78)See Article 4.1.8.8.

4.1.8.7. Methods of Analysis

1) Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in Article 4.1.8.12. (see Note A-4.1.8.7.(1)), except that the Equivalent Static Force Procedure described in Article 4.1.8.11. may be used for structure that meet any of the following criteria:
a) in cases where ${I_{E}} F_{a} S_{2}(0.2)$ is less than 0.35 -where the Seismic Category is SC_{2} or

SC2,
b) structures with a structural irregularity, of Type 1,2,3, 4, 5, 6 or 8 as defined in Table 4.186 that are less than 20 m in height and have a fundamental lateral period T
less than 0.5 s in each of two orthogonal directions as defined in Article 4.1.8.8.

4.1.8.8. Direction of Loading

1) Earthquake forces shall be assumed to act in any horizontal direction, except that the following shall be considered to provide adequate design force levels in the structure:
a) b)
where the components of the SFRS are not oriented along a set of orthogonal axes and $\mathrm{I}_{\mathrm{E}} \mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{a}}(0.2)$ is less than 0.35 , independent analyses about any two orthogonal axes is permitted, or
c) where the components of the SFRS are not oriented along a set of orthogonal axes and $\mathrm{I}_{\mathrm{E}} \mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{a}}(0.2)$ is equal to or greater than 0.35 , analysis of the structure independently in any two orthogonal directions for 100% of the prescribed earthquake loads applied in one direction plus 30% of the prescribed earthquake loads in the perpendicular design.

4.1.8.9. SFRS Force Reduction Factors, System Overstrength Factors, and General

 Restrictions1) Except as provided in Sentence 4.1.8.20.(7), the values of R_{d} and R_{o} and the corresponding system restrictions shall conform to Table 4.1.8.9. and the requirements of this Subsection
2) If it can be demonstrated through testing, research and analysis that the seismic performance of a structural system is at least equivalent to one of the types of SFR mentioned in Table 4.1.8.9., then such a structural system will qualify for values of R_{d} and R_{0} corresponding to the equivalent type in that Table. (See Note A-4.1.8.9.(5).)

Table 4.1.8.9.

SFRS Ductility-Related Force Modification Factors, \mathbf{R}_{d}, Overstrength-Related Force Modification Factors, $\mathbf{R}_{\mathbf{0}}$, and General Restrictions ${ }^{(1)}$

Forming Part of Sentences 4.1.8.9.(1) and (5)

Type of SFRS	R_{d}	Ro	Restrictions ${ }^{(2)}$				
			Cases Where $\mathrm{I}_{\mathrm{E}} \mathrm{FaS}_{\mathrm{a}}(0.2)$				Cases Where $\mathrm{I}_{\mathrm{E}} \mathrm{F}_{\mathrm{v}}(1.0)$
			< 0.2	$\begin{aligned} & \geq 0.2 \\ & \text { to }< \\ & 0.35 \end{aligned}$	$\left\{\begin{array}{c} \geq \\ 0.35 \\ \text { to } \leq \\ 0.75 \end{array}\right.$	$\stackrel{>}{0.75}$	> 0.3
Steel Structures Designed and Detailed According to CSA S16 ${ }^{(3)(4)}$							
...
Limited ductility plate walls	2.0	1.5	NL	NL	60	60	60
...			\ldots
Concrete Structures Designed and Detailed According to CSA A23.3							
	\ldots	\ldots
Conventional construction Moment-resisting frames	1.5	1.3	NL	NL	20	15	$10^{(5)}$

less than 0.5 s in each of two orthogonal directions as defined in Article 4.1.8.8.

4.1.8.8. Direction of Loading

1) Earthquake forces shall be assumed to act in any horizontal direction, except that the ollowing shall be considered to provide adequate design force levels in the structure:
a)
b) where the components of the SFRS are not oriented along a set of orthogonal axes and $t_{E} F_{a} S_{2}(0.2)$ is less than 0.35 the Seismic Category is SC1 or SC2, independen analyses about any two orthogonal axes is permitted, or
c) where the components of the SFRS are not oriented along a set of orthogonal axes and $\psi_{E} \mathrm{~F}_{\mathrm{a}} \mathrm{S}_{a}(0.2)$ is equal to or greater than 0.35 the Seismic Category is SC 3 or SC 4 analysis of the structure independently in any two orthogonal directions for 100% of the prescribed specified earthquake loads applied in one direction plus 30% of the prescribed specified earthquake loads in the perpendicular direction, with the combination requiring the greater element strength being used in the design
4.1.8.9. SFRS Force Reduction-Modification Factors, System Overstrength Factors, and General Restrictions
2) Except as provided in Sentence-Articles 4.1.8.20.(7), and 4.1.8.22., the values of R_{d} and R_{0} and the corresponding system restrictions shall conform to Table 4.1.8.9. and the requirements of this Subsection.
3) If it can be demonstrated through testing, research and analysis that the seismic performance of a structural system is at least equivalent to one of the types of SFRS mentioned-defined in Table 4.1.8.9., then such a structural system will qualify for values of R_{d} and R_{0} corresponding to the equivalent type in that Table. (See Note A-4.1.8.9.(5).)

Table 4.1.8.9.

SFRS Ductility-Related Force Modification Factors, \mathbf{R}_{d}, Overstrength-Related Force Modification Factors, \mathbf{R}_{o}, and General Restrictions ${ }^{(1)}$
Forming Part of Sentences 4.1.8.9.(1) and (5) 4.1.8.10.(5) and (6), 4.1.8.11.(12), 4.1.8.15.(9) and 4.1.8.20.(8)

Type of SFRS	R_{d}	Ro	Restrictions ${ }^{(2)}$				
			Gases Where $T_{E} F_{a} S_{a}(0.2)$ Seismic Category				$\begin{gathered} \text { Gases } \\ \text { Where } \\ H_{E} F_{v} \delta_{a}(1.0) \\ \hline \end{gathered}$
			$\begin{array}{\|c} <0.2 \\ \mathrm{SC} 1 \end{array}$	$\begin{aligned} & \geq 0.2 \\ & 200< \\ & \text { to } \\ & 0.35 \\ & \text { SC2 } \\ & \hline \end{aligned}$	$\begin{gathered} \geq \\ 0.35 \\ \text { to } \leq \\ 0.75 \\ \text { SC3 } \\ \hline \end{gathered}$	$\begin{gathered} >0.75 \\ \mathrm{SC} 4 \end{gathered}$	>0.3

Steel Structures Designed and Detailed According to CSA S16 (3)(4)

							$\begin{aligned} & \text { *** entire } \\ & \text { column } \\ & \text { deleted *** } \end{aligned}$
Moderately ductile truss momentresisting frames	3.5	1.6	NL	NL	50	30	
Moderately ductile plate walls	3.5	1.3	NL	NL	40	40	
Limited ductility plate walls	2.0	$\begin{aligned} & 1.15 \\ & \hline 1.5 \\ & 1.3 \end{aligned}$	NL	NL	60	60	
	..	\ldots		\ldots	
Concrete Structures Designed and Detailed According to CSA A23.3							
	
Conventional construction Moment-resisting frames	1.5	1.3	NL	NL	20	$\begin{gathered} 15 \\ \underline{10^{(5)(6)}} \end{gathered}$	

NBC(AE) 2019								PART 4 - CODE							Comments							
Shear walls Two-way slabs without beams	1.5 1.3	$\begin{aligned} & 1.3 \\ & 1.3 \end{aligned}$	NL 20	$\begin{aligned} & \hline \mathrm{NL} \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 40 \\ & \mathrm{NP} \end{aligned}$	$\begin{aligned} & \hline 30 \\ & \text { NP } \end{aligned}$	30 $N P$	Shear walls Two-way slabs without beams	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	1.3 1.3	NL 20	NL 15	$\begin{aligned} & \hline 40 \\ & \mathrm{NP} \end{aligned}$	30 NP								
Tilt-up construction								Tilt-up construction														
Moderately ductile walls and frames	2.0	1.3	30	25	25	25	25	Moderately ductile walls and frames	2.0	1.3	30	25	25	25								
Limited ductility walls and frames	1.5	1.3	30	25	20	20	$20^{(6)}$	Limited ductility walls and frames	1.5	1.3	30	25	20	20 (7)								
Conventional walls and frames	1.3	1.3	25	20	NP	NP	NP	Conventional walls and frames	1.3	1.3	25	20	NP	NP								
Other concrete SFRS(s) not listed above	1.0	1.0	15	15	NP	NP	NP	Other concrete SFRS(s) not listed above	1.0	1.0	15	15	NP	NP								
Timber Structures Designed and Detailed According to CSA O86								Timber Structures Designed and Detailed According to CSA O86														
\ldots	\ldots	\ldots															
								Moderately ductile cross-laminated timber shear walls: platform-type construction	2.0	1.5	30	30	30	$\underline{20}$								
								Limited ductility cross-laminated timber shear walls: platform-type construction	1.0	1.3	30	30	30	20								
Other wood- or gypsum-based SFRS(s) not listed above	1.0	1.0	15	15	NP	NP	NP	Other wood- or gypsum-based SFRS(s) not listed above	1.0	1.0	15	15	\ldots	NP								
Cold-Formed Steel Structures Designed and Detailed According to CSA S136																						
								Cold-Formed Steel Structures Designed and Detailed According to CSA S136														
Other cold-formed SFRS(s) not defined above	1.0	1.0	15	15	NP	NP	NP	Other cold-formed SFRS(s) not defined above	1.0	1.0	15	15	NP	NP								
Notes to Table 4.1.8.9.: (5) Frames limited to a maximum of 2 storeys. (6) Frames limited to a maximum of 3 storeys.								Notes to Table 4.1.8.9.: (5) Frames are limited to a maximum of 2 storeys. (6) The maximum height limit is permitted to be increased to 15 m where $\mathrm{I}_{\mathrm{E}} \mathrm{S}(1.0) \leq 0.3$. (67)Frames are limited to a maximum of 3 storeys.														
4.1.8.10. Additional System Restrictions 1) Except as required by Clause (2)(b), structures with a Type 6 irregularity, Discontinuity in Capacity - Weak Storey, as described in Table 4.1.8.6., are not permitted unless $\mathrm{IEF}_{\mathrm{a}} \mathrm{Sa}_{\mathrm{a}}(0.2)$ is less than 0.2 and the forces used for design of the SFRS are multiplied by $\mathrm{R}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}$.								4.1.8.10. Additional System Restrictions 1) Except as required by Clause (2)(b), structures with a Type 6 irregularity, Discontinuity in Capacity - Weak Storey, as described in Table 4.1.8.6., are not permitted unless ${ }_{1} E_{2} \mathcal{S}_{2}(0.2)$ is tess than 0.2 the Seismic Category is SC1 and the forces used for design of the SFRS are multiplied by $\mathrm{R}_{\mathrm{d}} \mathrm{R}_{0}$.														
2) Post-disaster buildings shall a) not have any irregularities conform Table 4.1.8.6., in cases where IEF b) not have a Type 6 irregularity as c) have an SFRS with an R_{d} of 2.0 o d) have no storey with a lateral stiffn	ing to $\mathrm{S}_{\mathrm{a}}(0.2$ scrib greate st tha	ypes is equa in T , and is less	, 3, 4 al to ble 4. than	5, 7 grea 8.6., hat of	nd 9 er tha the st	des 0.35 rey	din it								2) Post-disaster buildings shall a) not have any irregularities conforming to Types-Type 1, 3, 4, 5, 7 and 9 , or 10 irregularities as described in Table 4.1.8.6., in cases where $\rfloor_{E} F_{a} S_{a}(0.2)$ is equal to or greater than 0.35 The Seismic Category is SC3 or SC4, b) not have a Type 6 irregularity as described in Table 4.1.8.6., c) have an SFRS with an R_{d} of 2.0 or greater, and d) where they are constructed with concrete or masonry shear walls, have no storey with a lateral stiffness that is less than that of the storey above it, and e) where they are constructed with other types of SFRS, have no storey for which the interstorey deflection under lateral earthquake forces divided by the interstorey height, h_{s}, is greater than that of the storey above it.							

3) For buildings having fundamental lateral periods, T_{a}, of 1.0 s or greater, and where $\mathrm{IEF}_{\mathrm{V} S}(1.0)$ is greater than 0.25 , shear walls that are other than wood-based and form part of S. e 4.18.6
4) For buildings constructed with more than 4 storeys of continuous wood construction and where IEFaSa(0.2) is equal to or greater than 0.35 , timber SFRS consisting of shear walls with wood-based panels or of braced or moment-resisting frames as defined in Table 4.1.8.9. within the connuous wood construction shall not have Type 4 or Type 5 irregularities as described in Table 4.1.8.6. (See Note A-4.1.8.10.(4).)
5) The ratio $\alpha_{\overline{-}}$ for a Type 9 irregularity as described in Table 4.1.8.6. shall be determined independently for each orthogonal direction using the following equation:

$$
\alpha=Q_{g} / Q_{y}
$$

where
$\mathrm{Q}_{\mathrm{G}}=\ldots$ the resistance of the yielding mechanism required to resist the minimum earthquak loads, which need not be taken as less than R_{o} multiplied by the minimum latera earthquake force as determined in Article 4.1.8.11. or 4.1.8.12., as appropriate. (See Note A-4.1.8.10.(5).)
6) For buildings with a Type 9 irregularity as described in Table 4.1.8.6. and where $\mathrm{IEF}_{\mathrm{E}} \mathrm{S}_{\mathrm{a}}(0.2)$ is equal to or greater than 0.5 , deflections determined in accordance with Article 4.1.8.13. shall be multiplied by 1.2.
7) Structures where the value of α, as determined in accordance with Sentence (5), exceeds twice the limits specified in Table 4.1.8.6. for a Type 9 irregularity, and where $\mathrm{I}_{\mathrm{E}} \mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{a}}(0.2)$ is equal to or greater than 0.5 , are not permitted unless determined to be acceptable based on non-linear dynamic Analysis studies
(See Note A-4.1.8.10.(7).)
e) where they are constructed with other types of SFRS, have no storey for which the erstorey deflection under lateral earthquake forces divided by the interstorey height. hs_{s}, is greater than that of the storey above it.
34) For buildings having-Where the fundamental lateral periods, T_{a}, of 1.0 s or is greater, than or equal to 1.0 s and where IEFNSaleS (1.0) is greater than 0.25 , shear walls that are other than wood-based and form part of the SFRS shall be continuous from their top to the foundation and shall not have Type 4 or 5 irregularities of Tye 4 or 5 -as described in Table 4.1.8.6.
45) For buildings in Seismic Category SC3 or SC4 that are constructed with more than 4 storeys of continuous wood construction-and where IEFaSa(0.2) is equal to or greater than 9.35, timber SFRSs consisting of shear walls with wood-based panels or of braced or momentresisting frames as defined in Table 4.1.8.9. within the continuous wood construction shall not and (6).)
b) For buildings in Seismic Category SC3 or SC4 that are constructed with more than 4 storeys ff continuous wood construction, timber SFRSs consisting of moderately ductile or limited ductility cross-laminated timber shear walls, platform-type construction, as defined in Table 4.1.8.9. witios as described Tan 41.8 . (Sen Note A 41.810.(5) and (6).).
57) The ratio- α - for a Type 9 irregularity as described in Table 4.1.8.6. shall be determined independently for each orthogonal direction using the following equation:

$$
\alpha=Q_{g} / Q_{y}
$$

where
$\mathrm{Q}_{\mathrm{y}}=$ the resistance of the yielding mechanism required to resist the minimum earthquake loads, which need not be taken as less than Ro multiplied by the minimum specified ateral earthquake force as determined in Article 4.1.8.11. or 4.1.8.12., as appropriate (See Note A-4.1.8.10.(5그).)
68) For buildings with a Type 9 irregularity as described in Table 4.1.8.6. and where tEF $_{a} S_{a l l} \mathrm{~S}(0.2)$ is equal to or greater than 0.5 , deflections determined in accordance with Article 4.1.8.13. shall be multiplied by 1.2 .
79) Structures-For buildings where the value of α, as determined in accordance with Sentence (57), exceeds twice the appropriate limits specified in Table 4.1.8.6. for a Type 9 irregularity $\overline{\text { F }}_{\text {}}$ and where $t_{E} F_{2} a_{2 l} E S(0.2)$ is equal to or greater than 0.5_{1} are not permitted unless determined be acceptable based on-a n Non-linear dDynamic Aanalysis-studies- of the structure shall be carried out in accordance with Article 4.1.8.12. and the following criteria:
a) the analysis shall account for the effects of the vertical response of the building mass,
b) the analysis shall account for the effects of the vertical response of building
the analysis shall use vertical ground motion time histories that are compatible with horizontal ground motion time histories scaled to the target response spectrum and that are applied concurrently with the horizontal ground motion time histories,
d) the largest interstorey deflection at any level of the building as determined from the analysis shall not be greater than 60\% of the appropriate limit stated in Sentence 4.1.8.13.(3), and
e) the results of an analysis using the ground motion time histories in Clause (c) multiplied by 1.5 shall satisfy the non-linear acceptance criteria
(See Note A-4.1.8.10.(7ㅇ).)
10) The design of buildings in Seismic Category SC3 or SC4 with a Type 10 irregularity as escribed in Table 4.1.8.6. shall satisfy the following requirements:
a) the structure shall be designed to resist the additional earthquake forces due to the

4.1.8.11. Equivalent Static Force Procedure for Structures Satisfying the Conditions of Article 4.1.8.7.

2) Except as provided in Sentence (12), the minimum lateral earthquake force, V , shall be calculated using the following formula:

$$
\mathrm{V}=\mathrm{S}\left(\mathrm{~T}_{\mathrm{a}}\right) \mathrm{MvlEW} /\left(\mathrm{Ra}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}\right)
$$

except
b) for moment-resisting frames, braced frames, and other systems, V shall not be less than

$\mathrm{S}(2.0) \mathrm{MvlEW} /\left(\mathrm{R}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}\right)$

C) for buildings located on a site other than Class F and having an SFRS with an R_{d} equal to or greater than 1.5, V need not be greater than the larger of

$$
\begin{gathered}
\frac{2}{3} \mathrm{~S}(0.2) l_{\mathrm{E}} \mathrm{~W} /\left(\mathrm{R}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}\right) \text { and } \\
\mathrm{S}(0.5) \mathrm{IE}_{\mathrm{E}} \mathrm{~W} /\left(\mathrm{R}_{\mathrm{d}} R_{\mathrm{o}}\right)
\end{gathered}
$$

3) Except as provided in Sentence (4), the fundamental lateral period, T_{a}, in the direction under consideration in Sentence (2), shall be determined as:
a) for moment-resisting frames that resist 100% of the required lateral forces and where the frame is not enclosed by or adjoined by more rigid elements that would tend to) $0.085\left(\mathrm{~h}_{\mathrm{n}}\right)^{3 / 4}$ for steel moment frames
ii) $0.075\left(\mathrm{~h}_{\mathrm{n}}\right)^{3 / 4}$ for concrete moment frames, or
iii) 0.1 N for other moment frames,
b) $0.025 \mathrm{~h}_{\mathrm{n}}$ for braced frames where h_{n} is in metres,
c) $0.05\left(h_{n}\right)^{3 / 4}$ for shear wall and other structures where h_{n} is in metres, or
other established methods of mechanics using a structural model that complies with解 4.1 .8 .3 .(8), except tha
i) for moment-resisting frames, T_{a} shall not be taken greater than 1.5 times that
ii) for braced frames, T_{a} shall not be taken greater than 2.0 times that determined in Clause (b),
iii) for shear wall structures, T_{a} shall not be taken greater than 2.0 times that determined in Clause (c),
iv) for other structures, T_{a} shall not be taken greater than that determined in Clause (c), and
v)
4) The total lateral seismic force, V, shall be distributed such thata portion, F_{t}, shall be assumed to be concentrated at the top of the building, where F_{t} is equal to $0.07 \mathrm{~T}_{\mathrm{a}} \mathrm{V}$ but need not exceed 0.25 V and may be considered as zero where the fundamental lateral period, T_{a} does not exceed 0.7 s ; the remainder, $\mathrm{V}-\mathrm{F}_{\mathrm{t}}$, shall be distributed along the height of the building, including the top level, in accordance with the following formula:
andergoin of herizontal and vertical movements of inclined vertical members, while undergoing earthquake-induced deformations, on the floor systems they support shal be considered in the design of the building and accounted for in the application of Sentence 4.1.8.3.(5).
5) Except as provided in Sentence (12), the minimum specified lateral earthquake force, V shall be calculated using the following formula:

$$
\mathrm{V}=\mathrm{S}\left(\mathrm{~T}_{\mathrm{a}}\right) \mathrm{MvlE} \mathrm{~W} /\left(\mathrm{R}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}\right)
$$

except
b) for moment-resisting frames, braced frames, and other systems, V shall not be less than
$\mathrm{S}(2.0) \mathrm{MVI}_{\mathrm{V}} \mathrm{W} /\left(\mathrm{Ra}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}\right)$, and
c) for buildings located on a site designated as other than Class $F X_{F}$ and having an SFRS with an Rd equal to or greater than $1.5, V$ need not be greater than the larger of
${ }_{3}^{\frac{2}{3}}(2 / 3) S(0.2) I_{E} W /\left(R_{d} R_{0}\right)$ and

$$
\mathrm{S}(0.5) \mathrm{I}_{\mathrm{E}} \mathrm{~W} /\left(\mathrm{Ra}_{\mathrm{a}} \mathrm{R}_{\mathrm{o}}\right)
$$

3) Except as provided in Sentence (4), the fundamental lateral period, T_{a}, in the direction under consideration in Sentence (2), shall be determined as:
a) for moment-resisting frames that resist 100% of the required lateral earthquake forces and where the frame is not enclosed by or adjoined by more rigid elements that would end to prevent the frame from resisting lateral forces, and where h_{A} is in metres:
i) 0.085-($\left.\mathrm{h}_{\mathrm{h}}\right)^{3 / 4}$ for steel moment frames,
ii) $0.075-\left(\mathrm{h}_{\mathrm{h}}\right)^{3 / 4}$ for concrete moment frames, o
iii) $0.1-\mathrm{N}$ for other moment frames,
b) $0.025 \mathrm{~h}_{\mathrm{n}}$ for braced frames where h_{A} is in metres,
c) $0.05-\left(h_{n}\right)^{3 / 4}$ for shear wall and other structures where h_{n} is in metres, or
d) other established methods of mechanics using a structural model that complies with he requirments of Sen
formormined in Clause (a) s , T_{a} shall not be taken as greater than 1.5 times that
for braced frames, T_{a} shall not be taken as greater than 2.0 times that determine
iii) for shear wall structures, T_{a} shall not be taken as greater than 2.0 times tha determined in Clause (c)
iv) for other structures, T_{a} shall not be taken as greater than that determined in Clause (c), and
v) ..
4) The total-specified lateral seismic earthquake force, V , shall be distributed such that
a) a portion, F_{t}, shall be bssumed to be is concentrated at the top of the building, where F_{t} is equal to $0.07-\mathrm{TaV}$ but need not exceed $0.25-\mathrm{V}$ and may be considered as zero where the fundamental lateral period, T_{a}, does not exceed 0.7 s - and
b) the remainder, $\mathrm{V}-\mathrm{F}_{\mathrm{t}}$, shall be is distributed along the height of the building, including the top level, in accordance with the following formula:

5) For irregular structures requiring dynamic analysis in accordance with Article 4.1.8.7., V_{d} shall be taken as the larger of the V_{d} determined in Sentence (7), and 100% of V.
6) Except as required by Sentence (11), the values of elastic storey shears, storey forces, member forces, and deflections obtained from the Linear Dynamic Analysis, including the effect of accidental torsion determined in Sentence (4), shall be multiplied by $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{e}}$ to determine their design values, where V_{d} is the base shear
7) For the purpose of calculating deflections, it is permitted to use a value for V based on the 11) For the purpose of calculating deflections, it is permitted to use a value for $\mathrm{V}^{\text {base }}$
value for T_{a} determined in Clause 4.1.8.11. (3)(d) to obtain V_{d} in Sentences (8) and (9)
8) For buildings constructed with more than 4 storeys of continuous wood construction having a timber SFRS consisting of shear walls with wood-based panels or braced or momentresisting frames as defined in Table 4.1.8.9., and whose fundamental lateral period, T_{a}, is determined in accordance with Clause 4.1.8.11.(3)(d), the design base shear, V_{d}, shall be taken as the larger value of V_{d} determined in accordance with Sentence (7) and 100% of V . (See Note A-4.1.8.10.(4).)

4.1.8.15. Design Provisions

1) Except as provided in Sentences (2) and (3), diaphragms, collectors, chords, struts and connections shall be designed so as not to yield, and the design shall account for the shape of the diaphragm, including openings, and for the forces generated in the diaphragm due to the following cases, whichever one governs (see Note A-4.1.8.15.(1)):
a) forces due to loads determined in Article 4.1.8.11. or 4.1.8.12. applied to the diaphragm are increased to reflect the lateral load capacity of the SFRS, plus forces in the diaphragm due to the transfer of forces between elements of the SFRS associated with the lateral load capacity of such elements and accounting for discontinuities and changes in stiffness in these elements, or
b) a minimum force corresponding to the design-based shear divided by N for the diaphragm at level x.
2) Steel deck roof diaphragms in buildings of less than 4 storeys or wood diaphragms that are designed and detailed according to the applicable referenced design standards to exhibit designed and detailed according to the applicable referenced design standards to exhibit
ductile behaviour shall meet the requirements of Sentence (1), except that they may yield and the forces shall be
a) for wood diaphragms acting in combination with vertical wood shear walls, equal to the lateral earthquake design force,
b) for wood diaphragms acting in combination with other SFRS, not less than the force corresponding to $\mathrm{RaRo}_{\circ}=2.0$, and
c) ..
3) In cases where $I_{E F_{a}} S_{a}(0.2)$ is equal to or greater than 0.35 , the elements supporting any 5) is continuous wall, column or braced frame shall be designed for the lateral load capacity of the components of the SFRS they support. (See Note A-4.1.8.15.(5).)

4.1.8.16. Foundation Provisions

3) The shear and overturning resistances of the foundation determined using a bearing stress equal to 1.5 times the factored bearing strength of the soil or rock and all other resistances equal to 1.3 times the factored resistances need not exceed the design forces determined in Sentence 4.1.8.7.(1) using $R_{\mathrm{a}} \mathrm{R}_{\mathrm{o}}=1.0$, except that the factor of 1.3 shall not apply to the portion of the resistance to uplift or overturning resulting from gravity loads.
4) For irregular structures requiring dynamic analysis in accordance with Article 4.1.8.7., Vd_{d} shall be taken as the larger of the $\mathrm{V}_{\mathrm{d}_{2}}$ as determined in Sentence (7), and 100% of $\mathrm{V}_{\underline{2}}$ as determined in Article 4.1.8.11.
5) Except as required by Sentence (11), the values of elastic storey shears, storey forces member forces, and deflections obtained from the Linear Dynamic Analysis, including the effect of accidental torsion determined in Sentence (4), shall be multiplied by $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{e}}$ to determine their design values, where V_{d} is the base shear.
6) For the purpose of calculating deflections, it is permitted to use a value for of V based on the value for of T_{a} determined in Clause 4.1.8.11.(3)(d) to obtain V_{d} in Sentences (8) and (9).
7) For buildings constructed with more than 4 storeys of continuous wood construction, having a timber SFRS consisting of shear walls with wood-based panels or braced or momentresisting frames as defined in Table 4.1.8.9., and whose fundamental lateral period, T_{a}, is determined in accordance with Clause 4.1.8.11.(3)(d), the design base shear, $\mathrm{V}_{\mathrm{d} \text {, }}$ shall be taken as the larger value-of V_{d}, as determined in accordance with Sentence (7), and 100% of V , as determined in Article 4.1.8.11. (See Note A-4.1.8.10.(45) and (6).)

4.1.8.15. Design Provisions

1) Except as provided in Sentences (2) and (3), diaphragms, collectors, chords, struts and connections shall be designed so as not to yield, and the design shall account for the shape of the diaphragm, including openings, and for the forces generated in the diaphragm due to the following cases, whichever one governs (see Note A-4.1.8.15.(1)):
a) forces due to loads determined in Article 4.1.8.11. or 4.1.8.12. applied to the diaphragm are increased to reflect the lateral load cap elements of the SFRS associated the diaphragm due to the transfer orch elements and accounting for discontinuities and with the lateral load capacity of such eleme
b) a minimum force corresponding to the design-based shear-specified lateral earthquake force, V, divided by N for the diaphragm at level x .
(See Note A-4.1.8.15.(1).)
2) Steel deck roof diaphragms in buildings of less than 4 storeys or wood diaphragms that are designed and detailed according to the applicable referenced design standards to exhibit ductile behaviour shall meet the requirements of Sentence (1), except that they may yield and
a) for woil be diaphragms acting in combination with vertical wood shear walls, equal to the specified lateral earthquake design force, \underline{V},
b) for wood diaphragms acting in combination with other SFRSs, not less than the force corresponding to $\mathrm{Ra}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}=2.0$, and
c)
3) In cases where $1 \mathbb{F}_{2} S_{2}(0.2)$ Where the Seismic Category is equal to SC3 or-qreater than 0.35 5) In cases where $\mathbb{E}_{a} S_{a}(0.2)$ Where the Seismic Category is equal to-SC3 or-greater the
SC4, the elements supporting any discontinuous wall, column or braced frame shall be designed for the lateral load capacity of the components of the SFRS they support. (See Note A-4.1.8.15.(5).)

4.1.8.16. Foundation Provisions

3) The shear and overturning resistances of the foundation determined using a bearing stress equal to 1.5 times the factored bearing strength of the soil or rock and all other resistances equal to 1.3 times the factored resistances need not exceed the design-forces determined in Sentence 4.1.8.7.(1) using $\mathrm{Ra}_{\mathrm{d}} \mathrm{R}_{\mathrm{o}}=1.0$, except that the factor of 1.3 shall not apply to the portion of the resistance to uplift or overturning resulting from gravity loads.
4) At sites where $\mathrm{IEFaSa}_{\mathrm{a}}(0.2)$ is equal to or greater than 0.35 , basement walls shall be designed to resist earthquake lateral pressures from backfill or natural ground. (See Note A-4.1.8.16.(7).)
5) At sites where $\mathrm{IEF}_{\mathrm{a}} \mathrm{S}_{\mathrm{a}}(0.2)$ is greater than 0.75 , the following requirements shall be satisfied:
b) $\begin{aligned} & \text { a) } \\ & \text { bpread footings founded on soil defined as Site Class E or } F \text { shall be interconnected by }\end{aligned}$ continuous ties in not less than two directions.
6) Each segment of a tie between elements that is required by Clauses (6)(a) or (8)(b) shall be designed to carry by tension or compression a horizontal force at least equal to the greatest factored pile cap or column vertical load in the elements it connects, multiplied by a factor o $0.10 \mathrm{IEFaSa}(0.2)$, unless it can be demonstrated that equivalent restraints can be provided by other means. (See Note A-4.1.8.16.(9).)
4.1.8.18. Elements of Structures, Non-structural Components and Equipment (See Note A-4.1.8.18.)
7) Except as provided in Sentences (2), (7) and (16), elements and components of buildings described in Table 4.1.8.18. and their connections to the structure shall be designed to accommodate the building deflections calculated in accordance with Article 4.1.8.13. and the element or component deflections calculated in accordance with Sentence (9), and shall be designed for a lateral force, V_{p}, distributed according to the distribution of mass:

$$
\mathrm{V}_{\mathrm{p}}=0.3 \mathrm{~F}_{\mathrm{a}} \mathrm{~S}_{\mathrm{a}}(0.2) \mathrm{IES}_{\mathrm{p}} \mathrm{~W}_{\mathrm{p}}
$$

where
$\mathrm{F}_{\mathrm{a}}=$ as defined in Sentence 4.1.8.4.(7)
$\mathrm{Sa}(0.2)=$ spectral response acceleration value at 0.2 s , as defined in Sentence 4.1.8.4.(1),
$\mathrm{I}_{\mathrm{E}}=$ importance factor for the building, as defined in Article 4.1.8.5.,
$\mathrm{S}_{\mathrm{p}}=$..

Table 4.1.8.18.

Elements of Structures and Non-structural Components and Equipment(1) Forming Part of Sentences 4.1.8.18.(1), (2), (3), (6) and (7)

Category	Part or Portion of Building	C_{p}	Ar_{r}	R_{p}
1	All exterior and interior walls except those in Category 2 or 3	1.00	1.00	2.50
2	Cantilever parapet and other cantilever walls except retaining walls	1.00	2.50	2.50
...	\ldots			
	Masonry or concrete fences more than 1.8 m tall	1.00	1.00	2.50
...	...			
17	Electrical cable trays, bus ducts, conduits	1.00	2.50	2.50
...

7) At sites where $\mathcal{I E F F S}_{2} S_{2}(0.2)$ Where the Seismic Category is equal to-SC3 or-greater than 0.35 SC4, basement walls shall be designed to resist earthquake lateral pressures from backfill or natural ground. (See Note A-4.1.8.16.(7).)
8) At sites where $\Lambda_{E} F_{a} S_{a}(0.2)$ is greater than 0.75 - Where the Seismic Category is $\operatorname{SC4}$, the following requirements shall be satisfied:
a)
b) ... spread footings founded on soil defined as Site Class E or F designated as $X v$, where $V_{s 30}$ is less than or equal to $180 \mathrm{~m} / \mathrm{s}, X_{E}$ or X_{F} shall be interconnected by continuous ties in not less than two directions.
9) Each segment of a tie between elements that is required by Clauses-Clause (6)(a) or (8)(b) shall be designed to carry by tension or compression a horizontal force at least equal to the greatest factored pile cap or column vertical load in the elements it connects, multiplied by a factor of $0.10 \dagger_{E} F_{a} S_{a} \underline{0.11 E S(0.2), ~ u n l e s s ~ i t ~ c a n ~ b e ~ d e m o n s t r a t e d ~ t h a t ~ e q u i v a l e n t ~ r e s t r a i n t s ~ c a n ~}$ be provided by other means. (See Note A-4.1.8.16.(9).)
4.1.8.18. Elements of Structures, Non-structural Components and Equipmen (See Note A-4.1.8.18.)
10) Except as provided in Sentences (2), (7) and (16), elements and components of buildings described in Table 4.1.8.18. and their connections to the structure shall be designed to accommodate the building deflections calculated in accordance with Article 4.1.8.13, and the element or component deflections calculated in accordance with Sentence (9), and shall be designed for a specified lateral earthquake force, V_{p}, distributed according to the distribution of mass:

$$
V_{p}=0.3 F_{a} S_{a} S(0.2) \mathrm{IES}_{\mathrm{p}} W_{\mathrm{p}}
$$

where
$\mathrm{F}_{\mathrm{a}}-$ as defined in Sentence 4.1.8.4. (7)
$\mathrm{S}_{2}(0.2)=$ design spectral response-acceleration value at a period of 0.2 s , as defined in Sentence 4.1.8.4.(16),
$\mathrm{I}_{\mathrm{E}}=$ earthquake importance factor for the building, as defined in Article 4.1.8.5.,
$\mathrm{S}_{\mathrm{p}}=\ldots$
Table 4.1.8.18.
Elements of Structures and Non-structural Components and Equipment(1) Forming Part of Sentences 4.1.8.18.(1), (2), to (3), (6), and (7) and (16), and Clauses 4.1.8.23. (2) (c) and (3) (c)

2) For buildings other than post-disaster buildings, seismically isolated buildings, and buildings with supplemental energy dissipation systems, where $\mathrm{IEF}_{\mathrm{E}} \mathrm{S}_{\mathrm{a}}(0.2)$ is less than 0.35 , the requirements of Sentence (1) need not apply to Categories 6 through 22 of Table 4.1.8.18
3) For the purpose of applying Sentence (1) for Categories 11 and 12 of Table 4.1.8.18 elements or components shall be assumed to be flexible or flexibly connected unless it can be shown to $0 . \mathrm{s}$ in which persod of the element or compone assified annection is less than connected.
7) Connections to the structure of elements and components listed in Table 4.1.8.18. shall be designed to support the component or element for gravity loads, shall conform to the
requirements of Sentence (1), and shall also satisfy these additional requirements:
a) friction due to gravity loads shall not be considered to provide resistance to seismic forces,
c) \dddot{R}_{p} for anchorage using shallow expansion, chemical, epoxy or cast-in-place anchors shall be 1.5 , where shallow anchors are those with a ratio of embedment length to diameter of less than 8 ,
d) power-actuated fasteners and drop-in anchors shall not be used for tension loads,
e)
13) Free-standing steel pallet storage racks are permitted to be designed to resist earthquake effects using rational analysis, provided the design achieves the minimum performance level required by Subsection 4.1.8. (See Note A-4.1.8.18.(13).)
15) Glass need not comply with Sentence (14), provided at least one of the following conditions is met:
a) $\mathrm{IEF}_{\mathrm{a}} \mathrm{S}_{a}(0.2)<0.35$,
the glass has sufficient clearance from its frame such that $\mathrm{D}_{\text {clear }} \geq 1.25 \mathrm{D}_{\mathrm{p}}$ calculated as follows:
16) For structures with supplemental energy dissipation, the following criteria shall apply:
a) the value of $\mathrm{S}_{\mathrm{a}}(0.2)$ used in Sentence (1) shall be determined from the mean 5% the value of $\mathrm{S}_{\mathrm{a}}(0.2)$ used in Sentence (1) shall be determined from the mean 5%
damped floor spectral acceleration values at 0.2 s by averaging the individual 5% damped floor spectra at the base of the structure determined using Non-Linear Dynamic Analysis, and
b) the value of F_{a} used in Sentence (1) shall be 1.
2) For buildings in Seismic Category SC1 or SC2, other than post-disaster buildings, seismically isolated buildings, and buildings with supplemental energy dissipation systems, where $t_{E} F_{2} S_{2}(0.2)$ is less than 0.35 , the requirements of Sentence (1) need not apply to Categories 6 through 22 of Table 4.1.8.18.
) For the purpose of applying Sentence (1) for Categories 11 and 12 of Table 4.1.8.18 elements or components shall be assumed to be flexible or flexibly connected unless it can be shown that the fundamental period of the element or component and its connection is less tha rigidly connected.
7) Connections to the structure of elements and components listed in Table 4.1.8.18. shall be designed to support the component or element for gravity loads, shall conform to the requirements of Sentence (1), and shall also satisfy these additional requirements:
a) except as provided in Sentence (17), friction due to gravity loads shall not be considered to provide resistance to seismic earthquake forces,
c) \dddot{R}_{p} for anchorage using-shallow expansion, chemical, epoxy or post-installed mechanical, post-installed adhesive, and cast-in-place anchors in concrete shall be .5, where shallow anchors are those with a ratio of embedment length to diameter of less than 8 ,
d) post-installed mechanical, drop-in and adhesive anchors in concrete shall be prequalified for seismic applications by cyclic load testing in accordance with CSA A23.3, "Design of concrete structures," and ii) ACI 355.2, "Qualification of Post-Installed Mechanical Anchors in Concrete (ACI 355.2-19) and Commentary," or ACI 355.4, "Qualification of Post-Installed Adhesive Anchors in Concrete (ACI 355.4-19) and Commentary," as applicable,
e) post-installed mechanical and adhesive anchors in masonry and post-installed mechanical anchors in structural steel shall be pre-qualified for seismic applications by cyclic tension load testing (see Note A-4.1.8.18.(7)(e)),
df) power-actuated fasteners and drop-in anchors shall not be used for cyclic tension loads
eg) ..
13) Free-standing steel pallet storage racks are permitted to be designed to resist earthquake effects using rational analysis, provided the design achieves the minimum performance level required by Subsection 4.1.8. (See Note A-4.1.8.18.(13) and 4.4.3.1.(1).)
15) Glass need not comply with Sentence (14), provided at least one of the following conditions is met:
a) $t_{E} F_{2} S_{a}(0.2)<0.35$-the Seismic Category is SC 1 or SC2,
b) the glass has sufficient clearance from its frame such that $\mathrm{D}_{\text {clear }} \geq 1.25$ - D_{p} calculated as follows:
16) For structures with supplemental energy dissipation, the following criteria shall apply elements and components of buildings described in Table 4.1.8.18. and their connections to the structure shall be designed for a specified lateral earthquake force, V_{p}, determined at each floor level as follows:
a) the value of $\mathrm{S}_{2}(0.2)$ used in sentence (1) shall be determined from the mean 5% damped floor spectral acceleration values at 0.2 s by averaging the individual 5% damped floor spectra at the base of the structure determined using Non-Linear Dynamic Analysis, and
b) the value of F_{a} used in Sentence (1) shall be 1.
$\mathrm{S}_{\text {sed }}=$ peak spectral acceleration, $\mathrm{S}_{a}(\mathrm{~T}, \mathrm{X})$, in the period range of $\mathrm{T}=0 \mathrm{~s}$ to $\mathrm{T}=0.5 \mathrm{~s}$ determined from the mean 5%-damped floor spectral acceleration values by averaging the individual 5%-damped floor response spectra at the centroid of the floor area at that floor level determined using Non-linear Dynamic Analysis, and $\mathrm{IE}_{E}, \mathrm{C}_{\mathrm{p}}, A_{r}, R_{\mathrm{p}}, \mathrm{W}_{\mathrm{p}}=$ as defined in Sentence (1) (See Note A-4.1.8.18.(16).)
17) For a ballasted array of interconnected solar panels mounted on a roof, where $\operatorname{leS}(0.2)$ is less than or equal to 1.0, friction due to gravity loads is permitted to be considered to provide less than or equal to 1.0, friction due to
a) the roof is not normally occupied
b) the roof is surrounded by a parapet extending from the roof surface to not less than the greater of
150 mm above the centre of mass of the array, and
ii) 400 mm above the roof surface,
c) the height of the centre of mass of the array above the roof surface is less than the lesser of) 900 mm , and
ii) one half of the smallest plan dimension of the supporting base of the array,
d) the roof slope at the location of the array is less than or equal to 3°
e) the factored friction resistance calculated using the kinetic friction coefficient determined in accordance with Sentence (18) and a resistance factor of 0.7 is greater han or equal to the specified lateral earthquake force, V_{p}, on the array determined in accordance with Sentence (1) using values of $A_{r}=1.0, A_{x}=3.0, C_{p}=1.0$, and $R_{p}=$
f) the minimum clearance between the array and other arrays or fixed objects is the greater of i) 225 mm , and
ii) $1500(\mathrm{l} \text { ES }(0.2)-0.4)^{2}$, in mm , and
g) the minimum clearance between the array and the roof parapet is the greater of 450 mm , and $3000(1 \mathrm{~S}(0.2)-0.4)^{2}$ in mm
18) For the purpose of Clause (17)(e), the kinetic friction coefficient shall be determined in accordance with ASTM G115, "Standard Guide for Measuring and Reporting Friction Coefficients," through experimental testing that
a) is carried out by an accredited laboratory on a full-scale array or a prototype of the array.
b) models the interface between the supporting base of the array and the roof surface, and
c) accounts for the adverse effects of anticipated climatic conditions on the friction resistance.

See Note A-4.1.8.18.(18).)

4.1.8.19. Seismic Isolation

1) For the purposes of this Article and Article 4.1.8.20., the following terms shall have the meanings stated herein:
d) "isolator unit" is a structural element of the isolation system that permits large latera deformations under lateral earthquake design forces and is characterized by vertical oad-carrying capability combined with increased horizontal flexibility and high vertical stiffness, energy dissipation (hysteretic or viscous), self-centering capability, and lateral restraint (sufficient elastic stiffness) under non-seismic service lateral loads;
e)
2) Every seismically isolated structure and every portion thereof shall be analyzed and
designed in accordance with
a) the loads and requirements prescribed in this Article and Article 4.1.8.20.,
3) The ground motion histories used in Sentence (3) shall be
a)
compatible with
i) a response spectrum derived from the design spectral acceleration values, $\mathrm{S}(\mathrm{T})$, defined in Sentence 4.1.8.4.(9) for ground conditions of Site Classes A, B and C and
ii) a 5\% damped response spectrum based on a site-specific evaluation for ground conditions of Site Classes D, E and F, and
c) amplitude-scaled in an appropriate manner over the period range of $0.2 \mathrm{~T}_{1}$ to 1.5 T_{1}, where T_{1} is the period of the isolated structure determined using the post-yield stifness of the isolation system in the horizontal direction under consideration, or the period specified in Sentence 4.1.8.20.(1) if the post-yield stiffness of the isolation system is not well defined.
(See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)

4.1.8.21. Supplemental Energy Dissipation

2) Every structure with a supplemental energy dissipation system and every portion thereof shall be designed and constructed in accordance with
a) the loads and requirements prescribed in this Article and Article 4.1.8.22
b) ...
3) For the analysis and modeling of structures with supplemental energy dissipation devices, the following criteria shall apply.
b) for SFRS with $R_{d}>1.0$, the non-linear hysteretic behaviour of the SFRS shall be explicitly-with sufficient detail-accounted for in the modeling and analysis of the structure,
c) ..
4) The ground motion histories used in Sentence (4) shall be
a)
b) compatible with a 5% damped response spectrum derived from the design spectral acceleration values, $\mathrm{S}(\mathrm{T})$, defined in Sentence 4.1.8.4.(9), and
amplitude-scaled in an appropriate manner over the period range of $0.2 \mathrm{~T}_{1}$ to 1.5 T_{1}, where T_{1} is the fundamental lateral period of the structure with the supplemental energy dissipation system.
(See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)

4.1.8.22. Supplemental Energy Dissipation Design Considerations

5) Elements of the supplemental energy dissipation system, except the supplemental energy dissipation devices themselves, shall be designed to remain elastic for the design loads.
6) Supplemental energy dissipation devices and other components of the supplemental energy 7) Supplion system shall be designed in accordance with Sentence (1) with consideration of the following:
a) low-cycle, large-displacement degradation due to seismic loads,

N/A
a) the loads and requirements prescribed in this Article and Article 4.1.8.20.,
4) The ground motion time histories used in Sentence (3) shall be
a)
b) compatible with
i) a response spectrum derived from the design spectral acceleration values, $\mathrm{S}(\mathrm{T})$, defined in Sentence 4.1.8.4.(96) for-ground conditions of Site classes \wedge, B
site designations X_{v}, where $V_{s 30}$ is greater than $360 \mathrm{~m} / \mathrm{s}, X_{A}, X_{B}$ and X_{C}, and
ii) a 5\%--damped response spectrum based a conditions of Site Classes D, E and F site designations X_{V}, where $V_{s 30}$ is less than
c) amplitude-scaled in an appropriate manner over the period range of $0.2-T_{1}$ to $1.5-T_{1}$, where T_{1} is the period of the isolated structure determined using the post-yield stiffness of the isolation system in the horizontal direction under consideration, or the period specified in Sentence 4.1.8.20.(1) if the post-yield stiffness of the isolation system is not well defined
(See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)

4.1.8.21. Supplemental Energy Dissipation

2) Every structure with a supplemental energy dissipation system and every portion thereof shall be designed and constructed in accordance with
a) the loads and requirements prescribed in this Article and Article 4.1.8.22.
b)

For the analysis and modeling of structures with supplemental energy dissipation devices, following criteria shall apply.
a)
for an SFRS with $R_{d}>1.0$, the non-linear hysteretic behaviour of the SFRS shall be explicitly-with sufficient detail-accounted for in the modeling and analysis of the structure
c)
5) The ground motion time histories used in Sentence (4) shall be
a) compatible with a 5%-_damped response spectrum derived from the design spectral acceleration values, $\mathrm{S}(\mathrm{T})$, defined in Sentence 4.1.8.4.(96), and
c) amplitude-scaled in an appropriate manner over the period range of 0.2- T_{1} to .5- T_{1}, where T_{1} is the fundamental lateral period of the structure with the supplemental energy dissipation system
(See Note A-4.1.8.19.(4) and 4.1.8.21.(5).)

4.1.8.22. Supplemental Energy Dissipation Design Considerations

5) Elements-All components of the-a supplemental energy dissipation-system device, except 5) Elemerts-All components of ane a supplemental energy dissipation-system device, except
that portion of the-supplemental device that dissipates energy-dissipation devices themselves, $\frac{\text { that portion of the-supplemental device that dissipates en }}{\text { shall be designed to remain elastic for the design loads. }}$
6) Supplemental energy dissipation devices and other components of the supplemental energy dissipation system shall be designed in accordance with Sentence (1) with consideration of the following:
a) low-cycle, large-displacement degradation due to seismic earthquake loads,
4.1.8.23. Additional Performance Requirements for Post-disaster Buildings, High Importance Category Buildings, and a Subset of Normal Importance Category Buildings
7) Buildings designed in accordance with Articles 4.1.8.19. to 4.1.8.22. need not comply with
8) The design of post-disaster buildings in Seismic Category $\mathrm{SC} 2, \mathrm{SC} 3$ or SC 4 shall be verified using 5%-damped spectral acceleration values based on a 5% probability of exceedance in 50 years and shall satisfy the following requirements:
a) the building shall be shown to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentence 4.1.8.11. (2) using $I_{E}=1.0$ and $R_{d} R_{0}$ =1.3,
b) the largest interstorey deflection at any level of the building, as determined in accordance with Sentence 4.1.8.13.(2) using $\mathrm{I}_{\mathrm{E}}=1.0$ and $\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{o}}=1.0$, shall not exceed $0.005 \mathrm{~h}_{\mathrm{s}}$, and
c) the connections of elements and components of the building described in Table 4.1.8.18. with $R_{p}>1.5$ shall be shown to behave elastically for a specified lateral earthquake force, V_{p}, determined in accordance with Sentence 4.1.8.18.(1) using $\mathrm{R}_{\mathrm{p}}=$ earth
9) The design of High Importance Category buildings in Seismic Category SC3 or SC4 shall be verified using 5%-damped spectral acceleration values based on a 10% probability of exceedance in 50 years and shall satisfy the following requirements
a) the building shall be shown to behave elastically for a specified lateral earthquake force, V, determined in accordance with Sentence 4.1.8.11.(2) using $I_{E}=1.0$ and $R_{d} R$ 1.3
b) the largest interstorey deflection at any level of the building, as determined in accordance with Sentence 4.1.8.13.(2) using $I_{E}=1.0$ and $R_{d} R_{0}=1.0$, shall not exceed $0.005 h_{\mathrm{s}}$, and
c) the connections of elements and components of the building described in Table 4.1.8.18. with $R_{p}>1.3$ shall be shown to behave elastically for a specified latera earthquake force, V_{p}, determined in accordance with Sentence 4.1.8.18.(1) using $R_{p}=$ 1.3.
10) For Normal Importance Category buildings in Seismic Category SC4 with a height above grade of more than 30 m , the structural framing elements not considered to be part of the SFRS shall be designed to behave elastically for a specified lateral earthquake force, V , determined in accordance with Sentence 4.1.8.11.(2) using spectral acceleration values based n a 10% probability of exceedance in 50 years and R R $=13$
11) For the purposes of applying Sentences (2) to (4), torsional moments due to accidental eccentricities need not be considered if B, as determined in accordance with Sentence 4.1.8.11.(10), does not exceed 1.7
12) For the purposes of applying Sentences (2) to (4), elements of the SFRS and structural raming elements not considered to be part of the SFRS, when included in the analysis, shall be modeled in accordance with Sentence 4.1.8.3.(8) using elastic properties.
13) All other requirements of Articles 4.1.8.2. to 4.1.8.18. shall be satisfied in meeting the additional requirements of this Article.

4.2.2.1. Subsurface Investigation

1) A subsurface investigation, including groundwater conditions, shall be carried out by or under the direction of a registered engineering professional having knowledge and experience in planning and executing such investigations to a degree appropriate for the building and its use, the ground and the surrounding site conditions. (See Note A-4.2.2.1.(1).)

4.2.3.2. Preservation Treatment of Wood

1) Wood exposed to soil, rock or air above the lowest anticipated groundwater table shall be reated with preservative in conformance with CAN/CSA-O80 Series, "Wood Ppreservation," and the requirements of the appropriate commodity-standard as follows:

CAN/CSA-O8O 1 "Specification of treated wood"

Change reflects updated definition in the National Buildin Code - Alberta Edition 2023.

PART 4 - CODE UPDATE INFORMATION

NBC(AE) 2019

CAN/CSA-O80.2, Processing and Treatment,
b) CAN/CSA-O80.3, "Preservative Formulations," or
c) CSA O80.15, "Preservative Treatment of Wood for Building Foundation Systems, Basements, and Crawl Spaces by Pressure Processes.
2) Where timber has been treated as required in Sentence (1), it shall be cared for as provided in AWPA M4, "Care of Preservative-Treated Wood Products," as revised by Clause 6 of CAN/CSA-O80 Series, "Wood Preservation.

4.2.4.1. Design Basis

1) The design of foundations, excavations and soil- and rock-retaining structures shall be based on a subsurface investigation carried out in conformance with the requirements of this Section, and on any of the following, as appropriate
a) application of generally accepted geotechnical and civil engineering principles by a registered engneeng professional especially qualified in this field of work, as provided in this Section and other Sections of Part 4
b)
2) For the purpose of the application of the load combinations given in Table 4.1.3.2-A the 3) For the purpose of the application of the load combinations given in Table 4.1.3.2.-A, the
geotechnical components of loads and the factored geotechnical resistances at ULS shall be determined by a suitably qualified and experienced registered engineering professional. (Se Note A-4.2.4.1.(3).)
3) Geotechnical components of service loads and geotechnical reactions for SLS shall be determined by a suitably qualified and experienced registered engineering professional.
4) Communication, interaction and coordination between the designer and the registered engineering professional responsible for the geotechnical aspects of the project shall tak place to a degree commensurate with the complexity and requirements of the project.

4.2.7.2. Design of Deep Foundations

2) Where deep foundation units are load tested, as required in Clause 4.2.4.1.(1)(c), the determination of the number and type of load test and the interpretation of the results shall b carried out by a registered engineering professional especially qualified in this field of work (See Note A-4.2.7.2.(2).)

4.4.1. Air-Supported Structures

4.4.1.1. Design Basis for Air-Supported Structures

1) The structural design of air- supported structures shall conform to CSA S367, "Air-, Cable-, and Frame-Supported Membrane Structures," using the loads stipulated in Section 4.1., in accordance with limit states design in Subsection 4.1.3

4.4.2.1. Design Basis for Parking Structures and Repair Garages

1) Parking structures and repair garages shall be designed in conformance with CSA S413 "Parking Structures." (See Note A-4.4.2.1.(1).)

N/A
N/A
ab) CAN/CSA-O80.2, "Processing and Itreatment,"
c) CSA 080.15, "Preservative Treatment of Wood for Building Foundation Systems, Basements, and Crawl Spaces by Pressure Processes."
2) Where timber has been-Wood treated as required in Sentence (1), it shall be cared for as provided in AWPA M4, "Care of Preservative-Treated Wood Products," as revised by-Clause $6 \underline{4}$ of CAN/CSA-O80.OSeries, "General requirements for Wwood Ppreservation."

4.2.4.1. Design Basis

1) The design of foundations, excavations and soil- and rock-retaining structures shall be based on a subsurface investigation carried out in conformance with the requirements of this
a) application of generally accepted geotechnical and civil engineering principles by registered engineering professional especially qualified in this field of work, as provided in this Section and other Sections of Part 4,
b)
2) For the purpose of the application of the load combinations given in Table 4.1.3.2-A the geotechnical components of loads and the factored geotechnical resistances at ULS shall be geotechnical components of loads and the factored geotechnical resistances at ULS shall be Note A-4.2.4.1.(3).)
) Geotechnical components of service loads and geotechnical reactions for SLS shall be determined by a suitably qualified and experienced registered engineering professional.
) Communication, interaction and coordination between the designer and the registered engineering professional responsible for the geotechnical aspects of the project shall take place to a degree commensurate with the complexity and requirements of the project

4.2.7.2. Design of Deep Foundations

2) Where deep foundation units are load tested, as required in Clause 4.2.4.1.(1)(c), the determination of the number and type of load test and the interpretation of the results shall be carried out by a registered engineering professional especially qualified in this field of work. (See Note A-4.2.7.2.(2).)
4.4.1. Air-, Cable- and Frame-Supported Membrane Structures
4.4.1.1. Design Basis for Air-, Cable- and Frame-Supported Membrane Structures
3) The structural design of-air-supported structures air-, cable- and frame- membrane shall conform to CSA S367, "Air-, Ccable-, and Fframe-Ssupported Mmembrane Sstructures," using the loads stipulated in Section 4.1., in accordance with limit states design in Subsection 4.1.3.
4.4.2.1. Design Basis for Parking Structures-Storage Garages and Repair Garages
4) Parking structures Storage garages and repair garages, including associated ramps and pedestrian areas, shall be designed in conformance with the performance requirements of CSA pedestrian areas, structures." (See Note A-4.4.2.1.(1).)

4.4.3. Storage Racks

4.4.3.1. Design Basis for Storage Racks

1) Storage racks, including anchorage of racks, shall be designed for loads in accordance with this Part. (See Note A-4.1.8.18.(13) and 4.4.3.1.(1).)

Change reflects updated definition in the National Buildin Code - Alberta Edition 2023.

Change reflects updated definition in the National Building Code - Alberta Edition 2023

[^0]: Notes to Table 4121
 (1) See Note A-Table 4.1.2.1
 (2) See Note A-1.4.1.2.(1), Post-disaster Buildings, in Division A.

